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Chapter zero

Dear reader,
I’m glad to introduce you to my doctoral thesis. It is an account of about three years of
my studying and learning how to do research in mathematics, working on one of its most
beautiful topics, category theory – with an eye to applications to geometry. It would be
great to write an entire book as an introduction to the contents of this work, explaining
category theory from its very foundations, but this is not permitted in a Ph.D. thesis,
which has instead to be a rather technical exposition of the results obtained. So, I must
assume that you are already well acquainted with categories and functors, and also some
more advanced topics, which I will mention in the sections of this “zeroth chapter”.

The purpose of this introduction is twofold: on one hand, it will contain a summary of
the main theorems I have managed to prove, together with their theoretical background
and their motivation; on the other hand, it will be the occasion to write down some
definitions and results which we shall refer to in the following chapters. This explains
why I have decided to label it as “Chapter zero”, as if it were actually part of the
entire work. Starting from the next section, I will adopt the more usual detached style
that you probably are familiar with, if you are used to reading mathematical works.
Nonetheless, the style will sometimes be mathematically “informal”: you will encounter
“pre-definitions” and “pre-theorems”, which are just informal statements written to give
you some intuition; in any case don’t worry, since I will always refer to the precise
definitions and theorems that you will find in the thesis. Have a good reading!

0.1 Dg-categories and quasi-functors

Triangulated categories are nowadays a classical topic in mathematics, with many ap-
plications in geometry and algebra. We shall assume that the reader is acquainted with
the definitions and the basic features of the theory, and the classical examples (derived
categories of abelian categories). The well-known drawback of triangulated categories
is the non-functoriality of cones of morphisms. Cones should themselves be homotopy
colimits, and satisfy a suitable universal property; this suggests that a triangulated cat-
egory is, in some sense, a “shadow” of a more complicated, higher categorical structure,
where the notion of homotopy is formalised and becomes functorial. Among the many
models of higher categories, one of the most suitable to our needs (and the main object
of study of this thesis) is given by differential graded (dg-) categories.
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iv CHAPTER ZERO

Pre-definition 0.1.1 (Definitions 1.1.1, 1.1.9 and 1.2.1). A dg-category A is a cate-
gory whose hom-sets are endowed with a structure of cochain complex over a ground
commutative ring k, such that the compositions are (associative, unital) chain maps. A
dg-functor F : A→ B between dg-categories is a functor which preserves the additional
structure, namely, the map on morphisms

F : A(A,B)→ B(F (A), F (B))

is a chain map. Given two dg-categories A and B, the category Fundg(A,B) of dg-
functors has a natural structure of dg-category.

Dg-categories are based on complexes of k-modules. This choice puts them in the
realm of homological algebra, where we have many important homotopical features,
and the advantage of a relevant “computational simplicity” over other models (such as
topological ones). The category of complexes can be viewed itself as a dg-category,
called Cdg(k). The homotopical features of complexes (chain homotopies above all)
and other relevant constructions can be translated in the theory of dg-categories. A
fundamental one is clearly given by taking cohomology. Namely, given a dg-category A,
we may form the graded category of graded cohomologyH∗(A) and the ordinary k-linear
category H0(A) of zeroth cohomology: take the same objects as A and just project the
compositions. The construction is functorial, and also gives H∗(F ) and H0(F ) for a
given dg-functor F . It should be pointed out that the dg-category of complexes Cdg(k)
is defined in such a way that two complexes are homotopy equivalent if and only if they
are isomorphic in H0(Cdg(k)). So, we have a consistent notion of homotopy equivalence
in any dg-category: A and B are homotopy equivalent if they are isomorphic in H0(A).

Other important constructions that can be performed on chain complexes are taking
shifts and mapping cones. The reader can expect that both can be translated to any
dg-category: see Definitions 2.3.1 and 2.3.2. Both shifts and cones are characterised by
means of universal properties, that is, they are functorial (actually, they are particular
homotopy colimits). Now, it should be quite clear how dg-categories can be employed
to enhance triangulated categories:

Pre-definition 0.1.2 (Definition 2.3.13). Let A be a dg-category. We say that A is
pretriangulated if it contains, up to homotopy equivalence, all shifts of objects A[n] and
all functorial cones C(f) of closed degree 0 morphisms.

In the philosophy of homotopy theory and higher category theory, the existence of
shifts and (functorial) cones in A is required to hold up to homotopy equivalence. The
following fundamental result is now a matter of rather straightforward verifications:

Pre-theorem 0.1.3 (Theorem 2.3.14). If A is a pretriangulated dg-category, then
H0(A) has a natural structure of triangulated category.

Given a triangulated category T, it is important to decide whether there exists
a pretriangulated dg-category A such that H0(A) ∼= T: such a dg-category will be
called an enhancement of T. In order to address the (likewise important) problem of
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uniqueness of enhancements, we first have to understand what is the “right way” (from
the homotopical point of view) to identify two given dg-categories. The correct notion
is that of quasi-equivalence:

Pre-definition 0.1.4 (Definition 1.3.2). A dg-functor F : A→ B is a quasi-equivalence
if F induces quasi-isomorphisms between the corresponding hom-complexes, and H0(F )
is an equivalence.

In the case when our dg-categories are pretriangulated, a quasi-equivalence F is just
a dg-functor such that H0(F ) is an equivalence (Lemma 2.3.16). Quasi-equivalences
clearly induce a relation in the collection of dg-categories, but there is a serious technical
drawback: this relation is not symmetric. In other words, if there is a quasi-equivalence
A → B, there doesn’t need to be a quasi-equivalence B → A. Dg-functors themselves
are not “homotopy meaningful”: they are defined just as ordinary functors, whereas a
“homotopy coherent” dg-functor should not satisfy a strict identity F (gf) = F (g)F (f),
but should instead satisfy something like “F (gf) is coherently homotopic to F (g)F (f)”.
So, the idea is that any inverse of a quasi-equivalence should be such “homotopy coherent
dg-functor”. Extensive work has been done (by B. Toën and G. Tabuada among others)
to make this precise. The result is the so-called homotopy theory of dg-categories:

Pre-theorem 0.1.5 ([Tab05], [Toë07], Theorems 1.3.5 and 1.3.10). The category dgCat
of small dg-categories has a model category structure whose weak equivalences are the
quasi-equivalences. Moreover, its localisation along quasi-equivalences, called Hqe, ad-
mits an internal hom: for all dg-categories A and B, there is a dg-category RHom(A,B),
defined up to quasi-equivalence, which enhances the hom-set Hqe(A,B) in the following
sense:

Hqe(A,B)↔ {isom. classes of objects of H0(RHom(A,B))}.

As a matter of terminology, we call quasi-functor an object of RHom(A,B). Objects
in H0(RHom(A,B)) which admit an inverse in H0(RHom(B,A)) correspond essentially
to quasi-equivalences, so the above theorem is a satisfactory result, at least from the the-
oretical point of view: the relevant morphisms between dg-categories are precisely the
quasi-functors. Now, the difficulty is to work concretely with them. Being higher cat-
egorical entities, they are intrinsically complicated. However, there are some “concrete
incarnations” of the dg-category RHom(A,B) which enable us to do computations, at
least to some extent. If k is a field, RHom(A,B) can be described concretely by some-
thing that actually formalises precisely the idea of “homotopy coherent dg-functor”:
namely, A∞-functors (see Chapter 5). Their drawback lies in the complexity of the for-
mulae involved. Another way to describe RHom(A,B) is by employing bimodules, as we
are going to explain.

Quasi-functors as bimodules; adjoints

Given a dg-category A, for simplicity we set

Cdg(A) = Fundg(Aop,Cdg(k)).
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The dg-category Cdg(A) is the target of the Yoneda embedding of A. If F : A → B is
a dg-functor, then composing it with the Yoneda embedding B → Cdg(B), we obtain a
dg-functor

hF : A→ Cdg(B). (0.1.1)

This is a very special example of A-B-dg-bimodule (see Definition 1.2.5), with the prop-
erty that it actually comes from a genuine dg-functor A → B: namely, hF (A) is repre-
sentable for any A ∈ A. So, in order to define quasi-functors, we may try to follow this
pattern, employing some kind of “weak representability” notion. Fortunately, we have a
natural (componentwise) notion of quasi-isomorphism in the dg-category Cdg(B); hence,
we give the following definition:

Pre-definition 0.1.6 (Section 3.5). A quasi-functor F : A → B can be defined as a
bimodule F : A → Cdg(B) such that F (A) is quasi-isomorphic to a representable dg-
functor Bop → Cdg(k) for all A ∈ A. We also say that F is right quasi-representable.

Up to some technical issues, the above notion defines the objects of RHom(A,B).
Now, an obvious problem is recollecting the features of ordinary category theory, in
this particular context of dg-categories and quasi-functors. What we have managed to
do in this thesis is to give a simple characterisation of adjunctions of quasi-functors
(themselves, they are defined as adjunctions in a suitable bicategory of bimodules, see
the subsection ‘Adjoints’ of Section 3.5). To have a grasp of the idea, start from an
ordinary adjunction of dg-functors F a G : A→ B: it is an isomorphism

B(F (A), B) ∼= A(A,G(B)),

natural inA ∈ A andB ∈ B. This naturality implies that this is actually an isomorphism
of bimodules: on the right hand side we have the B-A-bimodule hG, whereas on the left
hand side we have the bimodule hF , which is obtained from hF : A→ Cdg(B) by means
of a sort of duality:

hF (A)(B) = B(B,F (A)),
hF (B)(A) = B(F (A), B)).

This duality is actually defined for all bimodules: it maps functorially A-B-bimodules
to B-A-bimodules, and vice-versa (see Proposition 3.3.4). Bimodules of the form hF
(up to isomorphism of bimodules), which are called right representable, are mapped
to bimodules of the form hF (up to isomorphism), which are called left representable.
Clearly, saying “the dg-functor G has a left adjoint” is equivalent to saying “hG is
left representable”: hF ∼= hG. Upon overcoming some technical difficulties (addressed
by means of the duality construction we have mentioned) it can be proved that this
characterisation can be consistently extended to quasi-functors in the natural way. First,
one has to define left quasi-representable bimodules in the obvious way; then, we have:

Pre-theorem 0.1.7 (Proposition 3.5.5). Let G : B → A be a quasi-functor. Then, G
has a left adjoint quasi-functor if and only if it is left quasi-representable.
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As the reader may expect, there is a similar characterisation of right adjoints. The
result can be applied to prove an existence theorem of adjoint quasi-functors, under some
hypotheses on the dg-categories:

Pre-theorem 0.1.8 (Theorem 3.5.9). Let A,B be dg-categories. Assume that A is
triangulated and smooth, and that B is locally perfect. Let T : A→ B be a quasi-functor.
Then, T admits both a left and a right adjoint.

0.2 Dg-lifts and Fourier-Mukai kernels
Quasi-functors, as the reader may expect, yield ordinary functors by taking cohomology.
Namely, there is a functor:

H0 = ΦA→B : H0(RHom(A,B))→ Fun(H0(A), H0(B)). (0.2.1)

If A and B are pretriangulated, then ΦA→B is viewed as taking values in the cat-
egory of exact functors Funex(H0(A), H0(B)). By definition, a dg-lift of a functor
F : H0(A) → H0(B) is a quasi-functor F : A → B such that H0(F ) = F . The unique-
ness problem of dg-lifts, which is the main topic of the thesis, amounts to studying
whether ΦA→B is essentially injective. The relevance of this problem lies in the fact
that it is essentially equivalent to the uniqueness problem of Fourier-Mukai kernels,
which is of current interest in algebraic geometry. Let us make this claim precise. From
now on assume that the ground commutative ring k is a field.

Let X be a quasi-compact and quasi-separated scheme (over k). We denote by
D(QCoh(X)) the derived category of quasi-coherent sheaves on X. The subcategory
of compact objects of D(QCoh(X)) coincides with the category of perfect complexes
Perf(X) . Given two schemes X and Y , there is a functor:

ΦX→Y
− : D(QCoh(X × Y ))→ Funex(Perf(X),D(QCoh(Y ))), (0.2.2)

which maps a complex E ∈ D(QCoh(X × Y )) to its Fourier-Mukai functor

ΦE : Perf(X)→ D(QCoh(Y )).

If an exact functor F : Perf(X)→ D(QCoh(Y )) is such that F ∼= ΦE , we say thay E is a
Fourier-Mukai kernel of F . Current research is devoted to investigating the properties of
ΦX→Y
− (see [CS12a] for a survey); for instance, the uniqueness problem of Fourier-Mukai

kernels is equivalent to the essential injectivity of ΦX→Y
− .

Now, let us see how this is related to dg-categories and quasi-functors. If X is
a quasi-compact and quasi-separated scheme (over the field k), then the derived cat-
egory D(QCoh(X)) has an enhancement, which we call Ddg(QCoh(X)), choosing it
once and for all and identifying H0(Ddg(QCoh(X))) = D(QCoh(X)). Taking the dg-
subcategory ofDdg(QCoh(X)) whose objects correspond to Perf(X), we find an enhance-
ment Perfdg(X) of the category of perfect complexes. A remarkable theorem by B. Toën
tells us that, under suitable hypotheses, every quasi-functor has a unique Fourier-Mukai
kernel, in the following sense:
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Theorem 0.2.1 (Adapted from [Toë07, Theorem 8.9]). Let X and Y be quasi-compact
and separated schemes over k. Then, there is an isomorphism in Hqe:

Ddg(QCoh(X × Y )) ∼−→ RHom(Perfdg(X),Ddg(QCoh(Y )). (0.2.3)

Next, a result adapted from [LS14, Theorem 1.1] gives the desired “bridge” between
Fourier-Mukai functors and quasi-functors between dg-categories:

Theorem 0.2.2. Let X and Y be Noetherian separated schemes over k such that X×Y
is Noetherian and the following condition holds for both X and Y : any perfect complex
is isomorphic to a strictly perfect complex (i. e. a bounded complex of vector bundles).
Then, there is a commutative diagram (up to isomorphism):

D(QCoh(X × Y )) ∼ //

ΦX→Y− ++

H0(RHom(Perfdg(X),Ddg(QCoh(Y )))

ΦPerfdg(X)→Ddg(QCoh(Y ))

��

Funex(Perf(X),D(QCohY )),

(0.2.4)

where the horizontal equivalence is induced by (0.2.3).

Remark 0.2.3. The hypotheses of the above theorem are satisfied if both X and Y are
quasi-projective.

The above result tells us that, under suitable hypotheses, the properties of ΦX→Y
−

are directly translated to those of ΦPerfdg(X)→Ddg(QCoh(Y )). In particular, the dg-lift
uniqueness problem for functors Perf(X) → D(QCoh(Y )) (with the above chosen dg-
enhancements) is equivalent to the uniqueness problem of Fourier-Mukai kernels.

Next, we show our results, and the corresponding geometric applications. The dg-
categories of interest have the feature of being triangulated (with this, we mean something
more than pretriangulated, see Definition 3.2.4), and being generated by some simpler
dg-subcategory, which in all cases of our interest will be equivalent to an ordinary k-
linear category (see Definition 3.2.7 for the general notion). A first easy result is as
follows:

Pre-theorem 0.2.4 (Theorem 4.3.8). Let A and B be triangulated dg-categories, and
assume that A is generated by a free k-linear category k[Q] over a quiver Q. Then,
ΦA→B is essentially injective.

The above result can be proved restricting to the free category k[Q] of generators,
namely, showing that Φk[Q]→B is essentially injective. This is done by using the char-
acterisation that quasi-functors F,G : k[Q] → B are isomorphic if and only if they are
(right) homotopic (see Definition 1.3.12): this makes the actual argument of proof very
simple. As an application, we notice that the category Perf(P1) has a full and strong
two-term exceptional sequence (O,O(1)), which can be viewed – translated to the cor-
responding dg-subcategory of Perfdg(P1) – as a free subcategory of generators. Hence,
we have the following result, which was already proved by A. Canonaco and P. Stellari
with geometric techniques:
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Pre-corollary 0.2.5 (Corollary 4.3.11). Let Y be a scheme with suitable hypotheses,
so that both Theorems 0.2.2 and 0.2.1 are applicable with X = P1. Then, the functor
ΦP1→Y
− is essentially injective.

Starting from this, we tried to generalise to dg-categories which have a strong
and full exceptional sequence of arbitrary length: a solution of the dg-lift uniqueness
problem in this situation would yield a uniqueness result of Fourier-Mukai kernels for
functors defined on Perf(Pn), which admits the strong and full exceptional sequence
(O,O(1), . . . ,O(n)). In general, these exceptional sequences are nonfree subcategories
of generators; we managed to obtain some positive results, employing a technique based
on the notion of glueing of dg-categories along a bimodule (see ‘The glueing technique’
in Section 4.3). Unfortunately, we didn’t obtain anything really satisfactory; also, the
research of counterexamples has proven itself to be very difficult, and we didn’t manage
to obtain anything deep (see Section 4.4 for an account of our attempts). Nevertheless,
such counterexamples to dg-lift uniqueness exist in general, since there are examples
of non-uniqueness of Fourier-Mukai kernels: in particular, when X is an elliptic curve,
ΦX→X
− is not essentially injective, as proved in [CS12b].
A more general dg-lift uniqueness result needs additional assumptions of the functors.

What we are able to prove is the following:
Pre-theorem 0.2.6 (Theorem 5.2.4). Assume that k is a field. Let A and B be trian-
gulated dg-categories. Assume that A is generated by an ordinary k-linear subcategory
E. Moreover, let F,G : A→ B be quasi-functors satisfying the following vanishing con-
dition:

Hj(B(F (E), F (E′))) ∼= 0,
for all j < 0, for all E,E′ ∈ E. Then, H0(F ) ∼= H0(G) implies F ∼= G.

The proof of the above result employs the description of quasi-functors by means
of A∞-functors; even if it involves some rather intricate computations with the A∞
formalism, it is not conceptually difficult. The geometric application goes as follows:
Pre-theorem 0.2.7 (Theorem 5.3.7). Let X and Y be schemes satisfying the hypotheses
of both Theorems 0.2.2 and 0.2.1, with X quasi-projective. Let E , E ′ ∈ D(QCoh(X×Y ))
be such that

ΦX→Y
E

∼= ΦX→Y
E ′

∼= F : Perf(X)→ D(QCoh(Y )),
and Hom(F (OX(n)), F (OX(m))[j]) = 0 for all j < 0, for all n,m ∈ Z. Then E ∼= E ′.

The above result is an improvement of [CS07, Theorem 1.1], clearly only regarding
the uniqueness problem and the non-twisted case: our result holds not only for smooth
projective varieties, and with the weaker vanishing hypothesis

Hom(F (OX(n)), F (OX(m))[j]) = 0.

It is also an improvement of [CS14, Remark 5.7], which holds for fully faithful functors.
If we don’t put hypotheses on the functors, or if we try to work with dg-categories

with more complicated generators, the dg-lift uniqueness problem becomes very compli-
cated, and in general it remains widely unsolved.
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0.3 Plan of the work
The thesis is organised in two parts: the first one explains the theoretical bases, whereas
the second one deals more specifically with the dg-lift uniqueness problem.

The first two chapters contain the basic foundational material on dg-categories. None
of this is original, but the exposition is perhaps somewhat unconventional: in particular,
in Chapter 2 we extensively develop (co)end calculus, a very useful tool which we hope
will become more widespread even among who doesn’t study category theory in itself.
Chapter 3 deals with the crucial notion of quasi-functor; in particular, we address the
notion of adjoint quasi-functors and prove a simple characterisation.

Chapter 4 contains the attempts to solve the problem of dg-lift uniqueness in some
simple situations, namely, when the domain dg-category is generated by an exceptional
sequence. The solution in the free case is contained here, and so are the other attempts,
which are based on the ‘glueing technique’. Chapter 5, finally, contains the main unique-
ness result, which is addressed with A∞-functors.
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Chapter 1

Basic dg-category theory, I

In this first chapter, we develop the main basic elements of the theory of dg-categories.
We will cover the elementary notions and some of the main results on the homotopy
theory. We will avoid set theoretic difficulties by implicitly fixing suitable Grothendieck
universes. We shall also fix, once and for all, a ground commutative ring k. Virtually
every category we shall encounter will be at least k-linear, so we allow ourself some
sloppiness, and often employ the terms “category” and “functor” meaning “k-category”
and “k-functor”.

1.1 Dg-categories and dg-functors
We assume that the reader is acquainted with the theory of (co)chain complexes: we just
recollect here some features. We denote by C(k) the category of (cochain) complexes of
k-modules and chain maps. This is a symmetric monoidal category, with unit given by
the base ring k (viewed as a complex concentrated in degree 0) and monoidal product
given by the usual tensor product of complexes:

(V ⊗W )n =
⊕

p+q=n
V p ⊗W q,

dV⊗W (v ⊗ w) = dV (v)⊗ w + (−1)|v|v ⊗ dW (w).

We will always employ the Koszul sign rule. Heuristically, this means that anytime we
make two consecutive graded symbols s and t (with degrees |s| and |t|) commute, we
must multiply by (−1)|s||t|:

st (−1)|s||t|ts. (1.1.1)
In particular, the symmetry isomorphism is given by

V ⊗W ∼−→W ⊗ V,
v ⊗ w 7→ (−1)|v||w|w ⊗ v.

The monoidal category C(k) is closed. That is, we have a natural (k-linear) bijection

Hom(Z ⊗ V,W ) ∼−→ Hom(Z,Hom(V,W )), (1.1.2)

3
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where the hom-complex Hom(V,W ) of maps from V to W is given by:

Hom(V,W )n = Homgr(V,W [n]),
df = dW ◦ f − (−1)|f |f ◦ dV .

(1.1.3)

Here, W [n] is the n-shift of the complex W , and Homgr(V,W [n]) is the module of
morphisms V →W [n] in the category of graded k-modules (that is, degree n morphisms
V →W ). The above bijection (1.1.2) is given by

f 7→ (z 7→ fz),

where fz(v) = f(z ⊗ v). This bijection actually lifts to an isomorphism of complexes:

Hom(Z ⊗ V,W ) ∼−→ Hom(Z,Hom(V,W )). (1.1.4)

The category of complexes can be used as a base for enrichment:

Definition 1.1.1. A differential graded (dg-) category is a category A enriched over
C(k). That is, A is given by a set of objects Ob A, a hom-complex A(A,B) for any
couple of objects A,B, and (unital, associative) composition maps:

A(B,C)⊗A(A,B)→ A(A,C),
g ⊗ f 7→ gf = g ◦ f

Remark 1.1.2. Giving a dg-category A is equivalent to giving a set of objects Ob A, a
complex of k-modules A(A,B) for any couple of objects A,B, and k-bilinear composition
maps

A(B,C)q ×A(A,B)p → A(A,C)p+q

which are associative and unital, subject to the graded Leibniz rule:

d(fg) = (df)g + (−1)|f |f(dg). (1.1.5)

For any A ∈ Ob A, the identity 1A is a closed degree 0 morphism: 1A ∈ A(A,A)0 and
d(1A) = 0.

Definition 1.1.3. Let A be a dg-category. The opposite dg-category Aop is the dg-
category with Ob Aop = Ob A, Aop(A,B) = A(B,A), and compositions defined by

Aop(B,C)⊗Aop(A,B)
= A(C,B)⊗A(B,A)
∼= A(B,A)⊗A(C,B)→ A(C,A) = Aop(A,C),

using the symmetry isomorphism of the monoidal structure on C(k) and the composition
in A.
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Remark 1.1.4. Given a dg-category A and f ∈ A(A,B), we write fop for the corre-
sponding morphism in Aop(B,A). Then, the composition of two morphisms fop and gop

in Aop is spelled out as follows:

fopgop = (−1)|f ||g|(gf)op,

whenever f and g are homogeneous of degrees |f | and |g|.

Definition 1.1.5. Let A and B be two dg-categories. The tensor product A⊗B of A
and B is the dg-category such that Ob(A⊗B) = Ob A×Ob B, and

(A⊗B)((A,B), (A′, B′)) = A(A,A′)⊗B(B,B′),

with compositions given by tensor products of compositions, namely:

(A⊗B)((A′, B′), (A′′, B′′))⊗ (A⊗B)((A,B), (A′, B′))
= A(A′, A′′)⊗B(B′, B′′)⊗A(A,A′)⊗B(B,B′)
∼= (A(A′, A′′)⊗A(A,A′))⊗ (B(B′, B′′)⊗B(B,B′))
→ A(A,A′′)⊗B(B,B′′)

= (A⊗B)((A,B), (A′′, B′′)).

Remark 1.1.6. The composition of two morphisms f ⊗ g and f ′ ⊗ g′ in A ⊗ B can be
spelled out as follows:

(f ′ ⊗ g′)(f ⊗ g) = (−1)|g′||f |f ′f ⊗ g′g,

assuming g′ and f are homogeneous. The identity morphism 1(A,B) is clearly given by
1A ⊗ 1B.
Remark 1.1.7. The tensor product of dg-categories commutes with taking opposites:

(A⊗B)op = Aop ⊗Bop.

In fact, objects and hom-complexes are equal, and this is also true for compositions,
thanks to monoidal coherence in C(k).
Example 1.1.8. The monoidal category of complexes C(k) is enriched over itself, with
the hom-complexes defined in (1.1.3). We denote this dg-category by Cdg(k).

Definition 1.1.9. Let A and B be dg-categories. A dg-functor F : A → B is a C(k)-
enriched functor of enriched categories. In other words, F consists of the following data:

• a function F : Ob A→ Ob B;

• for any couple of objects (A,B) of A, a chain map

F = F(A,B) : A(A,B)→ B(F (A), F (B)),
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subject to the usual associativity and unitality axioms.

Remark 1.1.10. Let A,B and C be dg-categories. A dg-functor F : A⊗B→ C is called
a dg-bifunctor. For any A ∈ A and B ∈ B, F induces dg-functors F (A,−) : B→ C and
F (−, B) : A → C, defined as follows: given homogeneous morphisms f : A → A′ in A
and g : B → B′ in B, we set

F (A, g) = F (1A ⊗ g) : F (A,B)→ F (A,B′),
F (f,B) = F (f ⊗ 1B) : F (A,B)→ F (A′, B).

Next, notice that

F (A′, g)F (f,B) = F (1A ⊗ g)F (f ⊗ 1B) = (−1)|f ||g|F (f ⊗ g),
F (f,B′)F (A, g) = F (f ⊗ 1B)F (1A ⊗ g) = F (f ⊗ g),

hence the following diagram is commutative up to the sign (−1)|f ||g|, and the diagonal
gives F (f ⊗ g):

F (A,B) F (f,B)
//

F (A,g)
��

F (f⊗g)
&&

F (A′, B)

F (A′,g)
��

F (A,B′)
F (f,B′)

// F (A′, B′).

Conversely, assume that for all A ∈ A and B ∈ B we are given dg-functors FA : B→ C
and FB : A→ C, such that FA(B) = FB(A) =: F (A,B) and the diagram

F (A,B) FB(f)
//

FA(g)
��

F (A′, B)

FA′ (g)
��

F (A,B′)
FB′ (f)

// F (A′, B′).

is commutative up to the sign (−1)|f ||g|, whenever f ∈ A(A,A′) and g ∈ B(B,B′)
are homogeneous morphisms. Then, there is a dg-bifunctor F : A ⊗ B → C which is
defined on objects by (A,B) 7→ F (A,B), and on morphisms by the diagonal of the above
diagram. F is the unique dg-bifunctor such that F (−, B) = FB and F (A,−) = FA.

A dg-bifunctor F : A ⊗ B → C can be thought as a “dg-functor of two variables”
A ∈ A and B ∈ B, functorial in both A and B. The same is true in general for dg-
functors A1 ⊗ · · · ⊗An → C: they can be viewed as “dg-functors of many variables”,
with functoriality in each variable. Sometimes, we will employ Einstein notation to
indicate which variables are covariant and which ones are contravariant. For example, a
dg-functor F : Bop ⊗A1 ⊗A2 → C will be written as

F (B,A1, A2) = FBA1,A2 ;
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lower variables are covariant, whereas upper variables are contravariant. Moreover, we
shall set (for instance)

F fA1,A2
= F (f ⊗ 1A1 ⊗ 1A2),

for any morphism f .
Small dg-categories and dg-functors form a category, which is denoted by dgCatk, or

simply dgCat when the base ring is clear.
There are usual operations that can be performed on a complex V of k-modules:

taking the graded module of cocycles Z∗(V ) and the graded module of cohomology
H∗(V ). Actually, these operations define functors:

Z∗ : C(k)→ Gr(k), (1.1.6)
H∗ : C(k)→ Gr(k), (1.1.7)

where Gr(k) denotes the monoidal category of graded k-modules. Restricting ourselves
to the zeroth degree, we also get functors

Z0 : C(k)→ Mod(k), (1.1.8)
H0 : C(k)→ Mod(k), (1.1.9)

to the monoidal category Mod(k) of k-modules. All of these functors are lax monoidal:
this means, taking H∗ as an example, that we have natural morphisms involving the
monoidal products and units:

H∗(V )⊗H∗(W )→ H∗(V ⊗W ),
k→ H∗(k).

(1.1.10)

(The second one is actually an isomorphism in our cases.) Hence, we obtain induced
functors at the level of enriched categories:

Z∗ : dgCat→ Gr(k)-Cat, (1.1.11)
H∗ : dgCat→ Gr(k)-Cat, (1.1.12)
Z0 : dgCat→ k-Cat, (1.1.13)
H0 : dgCat→ k-Cat. (1.1.14)

For instance, given a dg-category A, the graded category H∗(A) is defined as follows:
ObH∗(A) = Ob A, H∗(A)(A,B) = H∗(A(A,B)), and compositions given by

H∗(A)(B,C)⊗H∗(A)(A,B)→ H∗(A(B,C)⊗A(A,C))→ H∗(A(A,C)),

where the first arrow comes from (1.1.10) and the second one is induced by composition
in A. For any dg-category A, Z0(A) is called the underlying category of A, and H0(A)
is called the homotopy category of A. There are natural projection functors:

Z∗(A)→ H∗(A),
Z0(A)→ H0(A).



8 CHAPTER 1. BASIC DG-CATEGORY THEORY, I

The projection into cohomology will be often denoted by square parentheses, namely, if
f : A → A′ is a closed morphism in A, then [f ] : A → A′ denotes its cohomology class,
which is the corresponding morphism in H∗(A).

We are now able to speak of isomorphisms and equivalences between objects in a dg-
category. Given A,A′ ∈ A, we say that A is dg-isomorphic to A′, and write A ∼= A′, if A
and A′ are isomorphic in Z0(A); also, we say that A and A′ are homotopy equivalent, and
write A ≈ A′, if A and A′ are isomorphic in H0(A). A degree 0 morphism f : A → A′

in A is called a dg-isomorphism if Z0(f) is an isomorphism in Z0(A); it is called a
homotopy equivalence if H0(f) is an isomorphism in H0(A).
Remark 1.1.11. The functor Z0 : C(k)→ Mod(k) is essentially the underlying functor in
the usual meaning within enriched category theory. indeed, for any complex V ,

Z0(V ) = Hom(k, V )

as k-modules.
Remark 1.1.12. The underlying category of the dg-category Cdg(k) is the category of
complexes: Z0(Cdg(k)) = C(k). Its homotopy category K(k) = H0(Cdg(k)) is the
category of cochain complexes and homotopy classes of chain maps.

1.2 The dg-category of dg-functors
Let A,B be dg-categories. Then, using the fact that the tensor product of complexes
is symmetric, we can easily show that A ⊗ B ∼= B ⊗ A in dgCat. Hence, the tensor
product of dg-categories endows dgCat with a structure of symmetric monoidal category;
the monoidal unit is given by the dg-category 1 = 1k, with a single object E0 and
1(E0, E0) ∼= k〈1E0〉. We are going to show that dgCat is indeed a closed symmetric
monoidal category.

Definition 1.2.1. Let F,G : A → B be dg-functors. A dg-natural transformation
ϕ : F → G of degree p is a collection of degree p morphisms

ϕA : F (A)→ G(A),

for all A ∈ A, such that for any degree q morphism f ∈ A(A,A′) the following diagram
is commutative up to the sign (−1)|p||q|:

F (A) ϕA //

F (f)
��

G(A)

G(f)
��

F (A′)
ϕA′ // G(A′).

We write Natdg(F,G) for the complex of dg-natural transformations F → G. The
coboundary of ϕ : F → G is defined objectwise:

(dϕ)A = d(ϕA),
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for all A ∈ A. Dg-natural transformations can be composed:

Natdg(F2, F3)⊗Natdg(F1, F2)→ Natdg(F1, F3),
ψ ⊗ ϕ 7→ ψϕ,

where (ψϕ)A = ψAϕA for all A ∈ A. In the end, we may define the dg-category of
dg-functors Fundg(A,B) as the dg-category whose objects are dg-functors A → B and
whose complexes of morphisms are given by the complexes of dg-natural transforma-
tions, with the above compositions. This dg-category serves as the internal hom of the
symmetric monoidal category dgCat:

Proposition 1.2.2. Given dg-categories A,B and C, there is an isomorphism in dgCat:

Fundg(A⊗B,C) ∼−→ Fundg(A,Fundg(B,C)), (1.2.1)

natural in A,B and C.

Idea of proof. Given a dg-functor F : A ⊗ B → C, we define a dg-functor F ′ : A →
Fundg(B,C) by

F ′(A)(B) = F (A,B), (1.2.2)

Vice-versa, starting from F ′, the above formula defines its image F . The definition at
the level of dg-natural transformations is similar.

Remark 1.2.3. Let F,G : A ⊗ B → C be dg-bifunctors. Then, it is easily proved that
a family of maps ϕA,B : F (A,B) → G(A,B) gives a dg-natural transformation of dg-
functors F → G if and only if it is “natural in both variables”, that is, if and only if
ϕ−,B : F (−, B)→ G(−, B) and ϕA,− : F (A,−)→ G(A,−) are both dg-natural transfor-
mations for all A ∈ A and B ∈ B. More generally, given “dg-functors of many variables”
F,G : A1 ⊗ · · · ⊗ An → C, a family of maps ϕA1,...,An : F (A1, . . . , An) → G(A1, . . . , An)
gives a dg-natural trasfomation F → G if and only if it is “natural in each variable”, in
the sense explained above.
Remark 1.2.4. A (properly said) natural transformation ϕ of dg-functors F,G : A→ B
is by definition an element ϕ ∈ Z0(Natdg(F,G)), that is, a closed and degree 0 dg-natural
transformation; it is a morphism in the underlying category Z0(Fundg(A,B)). So, F
and G are dg-isomorphic if and only if there exists a natural transformation ϕ : F → G
such that ϕA : F (A)→ G(A) is an isomorphism for all A.

Dg-functors with values in the dg-category of complexes are called dg-modules and
are worth being studied in their own right.

Definition 1.2.5. Let A be a dg-category. A left A-dg-module is a dg-functor A →
Cdg(k). A right A-dg-module is a dg-functor Aop → Cdg(k).

Let B be another dg-category. A A-B-dg-bimodule is a dg-bifunctor Bop ⊗ A →
Cdg(k).



10 CHAPTER 1. BASIC DG-CATEGORY THEORY, I

Remark 1.2.6. Let F : A → Cdg(k) be a left dg-module. Given a couple of objects
(A,A′), we may view the functor F on the hom-complex A(A,A′) as an element

F(A,A′) ∈Hom(A(A,A′),Hom(F (A), F (A′))
∼= Hom(A(A,A′)⊗ F (A), F (A′)).

So, giving F as a functor A → Cdg(k) is the same as giving a complex of k-modules
F (A) for all objects A ∈ A, and chain maps

A(A,A′)⊗ F (A)→ F (A′),
f ⊗ x 7→ fx,

such that

g(fx) = (gf)x,
1Ax = x,

for any x ∈ F (A), for any f : A→ A′ and g : A′ → A′′. So, a left dg-module is given by
a family of complexes parametrised by objects of A, together with a left A-action. By
construction, we have

fx = F (f)(x).

Similarly, we have the characterisation of a right dg-module F : Aop → Cdg(k) as family
of complexes with a right action:

F (A)⊗A(A′, A)→ F (A′),
x⊗ f 7→ xf ;

in terms of F , we have
xf = (−1)|x||f |F (f)(x),

taking into account the Kozsul sign rule. Finally, recalling Remark 1.1.10, giving a dg-
bimodule F : Bop ⊗ A → Cdg(k) is the same as giving a family of complexes F (B,A)
together with a left action of A and a right action of B, subject to the compatibility
condition:

(gx)f = g(xf),

whenever x ∈ F (B,A) and f : B′ → B, g : A→ A′. We allow ourselves to drop parenthe-
ses and write gxf meaning (gx)f = g(xf). Actually, in terms of the original bifunctor
F , we have

F (f ⊗ g)(x) = (−1)|f |(|x|+|g|)gxf.

In the following, we will allow ourselves to shift freely from one characterisation of dg-
(bi)modules to another, and adopt indiscriminately either the “functor” notation or the
“left/right action” notation, keeping in mind how to interchange them.
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The dg-category of right A-modules is the category of functors Fundg(Aop,Cdg(k)),
and will be denoted by Cdg(A) . Moreover, we set:

C(A) = Z0(Cdg(A)), (1.2.3)
K(A) = H0(Cdg(A)). (1.2.4)

A morphism of left A-modules ϕ : F → G is simply a dg-natural transformation of
functors. Adopting the “left action” notation as explained in Remark 1.2.6, we see that
ϕ can be viewed as a family of maps ϕA : F (A)→ G(A) such that

ϕA′(fx) = (−1)|ϕ||f |fϕA(x),

for any x ∈ F (A) and f ∈ A(A,A′) (notice the Koszul sign rule). Similarly, a morphism
of right A-modules ψ : M → N satisfies the following:

ψA(xf) = ψA′(x)f,

for any x ∈M(A′) and f ∈ A(A,A′). Finally, a morphism of A-B-bimodules ξ : F1 → F2
is required to satisfy both compatibilities with the left and right actions:

ξ(B′,A′)(gxf) = (−1)|g||ξ|gξ(B,A)(x)f,

whenever x ∈ F1(B,A), f ∈ B(B′, B), g ∈ A(A,A′).

Yoneda lemma and Yoneda embedding

Let A be a dg-category. We associate to A an A-A-dg-bimodule called the diagonal
bimodule and denoted by hA = h. It is defined by

hA(A,A′) = hAA′ = A(A,A′), (1.2.5)

with right and left actions given by composition in A. Also, given a dg-functor F : C→
A, we denote respectively by hF and hF the A-C-dg-bimodule and the C-A-bimodule
defined by:

hF (C,A) = h
F (C)
A = A(F (C), A),

hF (A,C) = hAF (C) = A(A,F (C)).
(1.2.6)

The left and right actions of A and C on hF are defined by the following compositions
in A:

gf = g ◦ F (f),
g′g = g′ ◦ g,

whenever f ∈ C(C ′, C), g ∈ A(F (C), A) and g′ ∈ A(A,A′). The actions on hF are
defined analogously. Moreover, if G : B → A is another dg-functor, there is a B-C-dg-
bimodule hFG defined by:

hFG(C,B) = A(F (C), G(B)), (1.2.7)
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with left and right actions defined in a similar way as above.
Taking the components of the diagonal bimodule, we obtain the right dg-modules

hA = A(−, A) and the left dg-modules hA = A(A,−). A right (resp. left) A-dg-module
F is said to be representable if F ∼= hA (resp. F ∼= hA) for some A ∈ A. The well-known
Yoneda lemma has a counterpart in the differential graded framework:

Theorem 1.2.7 (Dg-Yoneda lemma). Let F ∈ Cdg(A) be a right A-dg-module, and let
A ∈ A. Then, there is an isomorphism of complexes:

Natdg(hA, F ) ∼−→ F (A),
ϕ 7→ ϕA(1A),

(1.2.8)

natural both in A and F .

Proof. The above map is clearly a chain map, and naturality in A and F is checked
directly. We may conclude by showing that it is bijective. Let x ∈ F (A). We look for
a dg-natural transformation ϕ : hA → F such that ϕA(1A) = x. If f ∈ A(A′, A) = hA

′
A ,

then we must have that

ϕA′(f) = ϕA′(1Af) = ϕA(1A)f = xf, (1.2.9)

so we see that ϕ can be defined in a unique way. To conclude, we just have to show that
the above definition actually gives a dg-natural transformation, but this is straightfor-
ward.

Remark 1.2.8. Assume that a right A-dg-module F is representable: there exists an
isomorphism ϕ : hA ∼−→ F for some A ∈ A. Yoneda lemma (and its proof) tells us
that this isomorphism is of the form ϕA′(f) = ef for some (uniquely determined) e ∈
Z0(F (A)). The bijectivity of ϕA′ implies that for any y ∈ F (A′) there exists a unique
f : A′ → A such that y = ef . This actually characterises representable A-modules:
F ∼= hA if and only if there exists an element e ∈ F (A), closed and of degree 0, such
that for any y ∈ F (A′) there exists a unique f : A′ → A such that y = ef . The reader
should compare this discussion with the definition of universal arrow and the notion of
counit of an adjunction.
Remark 1.2.9. Taking Aop instead of A in the above discussion gives the Yoneda lemma
for left A-modules, that is, the following natural isomorphism of complexes:

Natdg(hA, F ) ∼−→ F (A),
ϕ 7→ ϕA(1A),

whenever F : A → Cdg(k) is a left A-module, and A ∈ A. Also, Remark 1.2.8 can be
dualised, giving the following characterisation of representable left A-modules: F ∼= hA

if and only if there exist an element n ∈ Z0(F (A)) such that for any y ∈ F (A′) there
exists a unique f : A→ A′ such that y = fn.
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Now, let us come back to the diagonal bimodule h = hA. As we said, it is a dg-
functor h : Aop ⊗A→ Cdg(k). By (1.2.1) (also using that Aop ⊗A ∼= A⊗Aop), it can
be viewed as a dg-functor (we abuse notation)

h : A→ Cdg(A),
A 7→ hA,

f 7→ hf : hA1 → hA2 ,

(1.2.10)

whenever f ∈ A(A1, A2), where by definition

hAf (g) = fg,

for all g ∈ hAA1
. So, we see that the map induced by h on morphisms

A(A1, A2)→ Natdg(hA1 , hA2)

is actually the inverse of the Yoneda isomorphism (1.2.8). We conclude that the dg-
functor (1.2.10) is fully faithful. It is called the Yoneda embedding of A.

Dg-adjunctions

The notion of adjoint dg-functors is a direct generalisation of the notion of ordinary
adjoint functors. In the following, we briefly recall the main results of the theory, inter-
preted in the differential graded framework.

Definition 1.2.10. Let F : A � B : G be dg-functors. We say that F is a left adjoint
of G (and G is a right adjoint of F ), writing F a G, if there is an isomorphism of
complexes:

ϕA,B : B(F (A), B) ∼−→ A(A,G(B)), (1.2.11)

natural in both A and B.

Remark 1.2.11. Naturality can be expressed in terms of left and right actions. So, we
have:

ϕ(f ◦ F (a)) = ϕ(f) ◦ a,
ϕ(b ◦ f) = (−1)|b||f |G(b) ◦ ϕ(f),

whenever f : F (A)→ B, a : A′ → A and b : B → B′.
The natural isomorphism ϕ can be viewed as an isomorphism of left B-modules:

ϕ : hF (A) ∼−→ hAG,

natural in A ∈ A. Applying the Yoneda lemma, we find out that ϕ is determined by
closed degree zero maps ηA : A → GF (A), such that for any f : A → G(B) there exists
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a unique f ′ : F (A)→ B such that f = G(f ′)ηA:

A

ηA
��

f
// G(B)

GF (A).
G(f ′)

::

(1.2.12)

Naturality in A implies that η = (ηA) : 1A → GF is a (closed, degree zero) natural
transformation, which is called the unit of the adjunction. Similarly, we may view ϕ−1

as an isomorphism of right A-modules:

ϕ−1 : hG(B) → hFB,

natural in B ∈ B. So, the adjunction is also determined by the counit ε : FG → 1B, a
(closed, degree zero) natural transformation which satisfies the dual universal property:

B F (A)g
oo

F (g′)zz

FG(B).

εB

OO

(1.2.13)

Clearly, a dg-adjunction F a G induces adjunctions Z0(F ) a Z0(G) and H0(F ) a
H0(G), with units and counits naturally induced by the unit and counit of F a G.
Remark 1.2.12. Adjoints are obtained just by checking universal properties. That is,
assume we are given a dg-functor G : B → A, and assume that for any A ∈ A we
find an object F (A) ∈ B together with a closed degree 0 map ηA : A → GF (A) which
satisfy the universal property (1.2.12); then, there is a unique way to define a dg-functor
F : A → B such that F a G and ηA is the unit of the adjunction. To see this, just
start from f : A → A′ and apply (1.2.12) to ηA′ ◦ f . We find a unique morphism
F (f) : F (A)→ F (A′) such that GF (f)ηA = ηA′f . Thanks to uniqueness, we are able to
prove that f 7→ F (f) is a chain map, and compositions and units are preserved.

The dual statement is clearly true: if we start with F : A→ B and we find G(B) ∈ A
and εB : FG(B) → B which satisfy the dual universal property (1.2.13), then we get
G : B→ A such that F a G with counit given by the εB.

By definition, a dg-functor F : A→ B is (dg-)fully faithful if for any A,A′ ∈ A, the
map on hom-complexes

F(A,A′) : A(A,A′)→ B(F (A), F (A′))

is an isomorphism of complexes. Moreover, we say that F is (dg-)essentially surjective
if for any B ∈ B there exists A ∈ A such that B ∼= F (A) (in other words, Z0(F )
is essentially surjective). When we are given an adjunction F a G, then we have the
following useful characterisation:
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Proposition 1.2.13. Let F a G : A � B be an adjunction of dg-functors. Then, F is
fully faithful if and only if the unit η : 1A → GF is an isomorphism. Dually, G is fully
faithful if and only if the counit ε : FG→ 1B is an isomorphism.

This proposition can be strenghtened, giving a very useful result. It is a direct
adaptation of [JM89, Lemma 1.3], which is proved using the formalism of (co)monads:

Proposition 1.2.14. Let F a G : A � B be an adjunction of dg-functors. Then,
GF ∼= 1A if and only if the unit η : 1A → GF is an isomorphism. Dually, FG ∼= 1B if
and only if the counit ε : FG→ 1B is an isomorphism. In particular, F is fully faithful
if and only if GF ∼= 1A, and G is fully faithful if and only if FG ∼= 1B.

1.3 Quasi-equivalences and homotopy
There is a natural notion of equivalence between dg-categories. By definition, a dg-
functor F : A→ B is a dg-equivalence if there exists a dg-functor F ′ : B→ A such that
F ′F ∼= 1A and FF ′ ∼= 1B. Dg-equivalences have a similar characterisation as ordinary
equivalences of categories:

Proposition 1.3.1. Let F : A→ B be a dg-functor. Then, F is a dg-equivalence if and
only if it is fully faithful and essentially surjective.

Fully faithfulness and essential surjectivity have “homotopy counterparts”:

Definition 1.3.2. Let F : A→ B be a dg-functor. We say that F is quasi-fully faithful
if for any couple of objects A,B ∈ A the chain map

F(A,B) : A(A,B)→ B(F (A), F (B))

is a quasi-isomorphism of complexes (that is, it induces an isomorphism in the graded
cohomology). Moreover, we say that F is quasi-essentially surjective if H0(F ) is es-
sentially surjective. F is called a quasi-equivalence if it is both quasi-fully faithful and
quasi-essentially surjective.

One could naively expect that a quasi-equivalence F : A → B has a “homotopy
inverse dg-functor”, that is, a dg-functor F ′ : B→ A such that F ′F ≈ 1A and FF ′ ≈ 1B.
Unfortunately, this is not the case. In general, if we define A ∼ B by “there exists a quasi-
equivalence A → B”, we find a reflexive and transitive relation, but not a symmetric
one. Given A and B, we say that they are quasi-equivalent, writing A

qe
≈ B, if there

exists a zig-zag of quasi-equivalences:

A← A1 → . . .← An → B.

Understading dg-categories up to quasi-equivalence is one of the goals of the homo-
topy theory of dg-categories. The task is easier when we notice that the category dgCat
has a natural model structure whose weak equivalences are the quasi-equivalences. In
the following, we show the main features of this structure.
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Definition 1.3.3. Let F : A → B be a dg-functor. We say that F is a fibration (or
isofibration) if it satisfies the following two properties:

1. For any A,A′ ∈ A, the map

F(A,A′) : A(A,A′)→ B(F (A), F (A′))

is surjective.

2. For any isomorphism g : B0 → B1 in H0(B) and any A1 ∈ F−1(B1), there exists
an isomorphism f : A0 → A1 in H0(A) such that H0(F )(f) = g.

Remark 1.3.4. Call a dg-functor a trivial fibration if it is both a fibration and a quasi-
equivalence. If G : A → B is a trivial fibration, then G is strictly surjective on objects.
In fact, given B ∈ B, there is an isomorphism B

∼−→ G(A) in H0(B) (G is a quasi-
equivalence), and moreover there exists an isomorphism A′

∼−→ A in H0(A) which is
mapped by G in B ∼−→ G(A) (G is a fibration); in particular, G(A′) = B.

Notice that every dg-category A is fibrant, in the sense that the unique dg-functor
A → 0 is a fibration (0 is the dg-category with one object and trivial complex of
morphisms).

Theorem 1.3.5 ([Tab05]). The category dgCat of small dg-categories admits a model
category structure, with weak equivalences given by quasi-equivalences and fibrations
given by the isofibrations of Definition 1.3.3.

Remark 1.3.6. Cofibrations in dgCat are defined to be the dg-functors which satisfy the
left lifting property with respect to trivial fibrations. In particular, we see that a dg-
category C is cofibrant if and only if any dg-functor F : C→ B admits a lift along any
trivial fibration G : A→ B:

A
G
����

C

F̃

>>

F // B.

(1.3.1)

We call Hqe the localisation of dgCat along quasi-equivalences, and denote by

` : dgCat→ Hqe

the localisation functor. Hqe is often called the homotopy category of dg-categories. The
machinery of model categories allows us to describe morphisms in Hqe:

Proposition 1.3.7 (an application of [Hov99, Theorem 1.2.10]). A morphism F̂ : A→
B in Hqe is represented by a roof:

A G←− Q(A) F−→ B,

in the sense that F̂ = `(F )`(G)−1. Moreover, G is a trivial fibration, and Q(A) is a
cofibrant dg-category (often called a cofibrant replacement of A).
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Remark 1.3.8. A morphism F̂ ∈ Hqe(A,B), described as above, clearly yields an ordi-
nary functor H0(F̂ ) : H0(A)→ H0(B), defined up to isomorphism. This procedure will
be made clearer in the following chapters.
Remark 1.3.9. If the domain dg-category A is already cofibrant, then a morphism
F̂ : A→ B in Hqe is represented by a dg-functor F : A→ B, in the sense that F̂ = `(F ).
A main problem is understanding what it means that `(F ) = `(G), that is, when two
dg-functors induce the same morphism in Hqe.

The homotopy category Hqe has a structure of symmetric monoidal category. Given
two dg-categories A and B, its derived tensor product is defined (up to quasi-equivalence)
as:

A⊗L B = Ahp ⊗B
qe
≈ A⊗Bhp qe

≈ Ahp ⊗Bhp, (1.3.2)
where Ahp is a h-projective resolution of A (see, for instance, [CS15, Remark 2.7]). An
important result is that this monoidal structure is closed:

Theorem 1.3.10 ([Toë07]). For any pair of dg-categories A and B, there is a dg-
category RHom(A,B) such that there is a bijection

Hqe(A⊗L B,C) ∼−→ Hqe(A,RHom(B,C)), (1.3.3)

natural in A,B,C ∈ Hqe. The above bijection lifts to a natural quasi-equivalence

RHom(A⊗L B,C) ∼−→ RHom(A,RHom(B,C)). (1.3.4)

Moreover, the set of morphisms Hqe(A,B) is in natural bijection with the isomorphism
classes of H0(RHom(A,B)).

The internal hom is defined up to quasi-equivalence, and has many “incarnations”,
which we will see in the following chapters. Normally, we will allow ourselves to shift
from one description to another, keeping the RHom notation.

A very useful tool in computations within the homotopy category Hqe is given by
homotopies. In the model category dgCat, right homotopies are given by “homotopy co-
herent, homotopy invertible natural transformations” between dg-functors. To describe
them, we first need to define the dg-category of “homotopy coherent morphisms” of a
given dg-category:

Definition 1.3.11. Let A be a dg-category. The dg-category of (homotopy coher-
ent) morphisms Mor A is defined as follows. Objects are triples (A,B, f), where f ∈
Z0(A(A,B)). A degree nmorphism (A,B, f)→ (A′, B′, f ′) is given by a lower triangular
matrix

(u, v, h) =
(
u 0
h v

)
,

where u ∈ A(A,A′)n, v ∈ A(B,B′)n and h ∈ A(A,B)n−1. Compositions are defined by
matrix multiplication with a sign rule:(

u′ 0
h′ v′

)(
u 0
h v

)
=
(

u′u 0
(−1)nh′u+ v′h v′v

)
,
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whenever (u, v, h) has degree n. The differential of a morphism (u, v, h) : (A,B, f) →
(A′, B′, f ′) of degree n is defined by

d

(
u 0
h v

)
=
(

du 0
dh+ (−1)n(f ′u− vf) dv

)
.

There are obvious “source” and “target” dg-functors:

S : Mor A→ A, (A,B, f) 7→ A, (u, v, h) 7→ u,

T : Mor A→ A, (A,B, f) 7→ B, (u, v, h) 7→ v.

Notice that the chosen sign conventions in the definition of Mor A allow to define S
and T in the simplest way, without any sign twist. The dg-category Mor A has a full
subcategory P (A) whose objects are the morphisms (A,B, f) such that f is a homotopy
equivalence. Now, we may define the notion of right homotopy of dg-functors:

Definition 1.3.12. Let F,G : A → B be dg-functors. A right homotopy from F to G
is a dg-functor ϕ : A→ P (B) such that the diagram

B

A

F

<<

G
""

ϕ
// P (B)

S

OO

T
��

B

(1.3.5)

is commutative. In this case, we will say that F and G are right homotopic.

The dg-category P (B) defines a path object for B in the model category dgCat (see
[Tab10, Proposition 3.3]). Hence, the general theory of model categories, in particular
[Hov99, Theorem 1.2.10], gives us the following result, which is an important tool for
concrete computations:

Corollary 1.3.13. Let A and B be dg-categories, and assume that A is cofibrant. Let
F̂ , Ĝ ∈ Hqe(A,B). Write F̂ = `(F ) and Ĝ = `(G) for some dg-functors F,G : A → B.
Then, F̂ = Ĝ if and only if F and G are right homotopic.

Remark 1.3.14. Let B be a dg-category. There is a natural functor

H0(Mor B)→ MorH0(B),
(A,B, f) 7→ (A,B, [f ]),
[(u, v, h)] 7→ ([u], [v]),

(1.3.6)

where MorH0(B) denotes the ordinary category of morphisms of H0(B). It will be
proven that this functor is surjective, full, and reflects isomorphisms (see Proposition
4.2.2); we think of it as the functor which “forgets homotopies”. Now, let F,G : A→ B
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be dg-functors, and let ϕ : A→ Mor B be a dg-functor such that Sϕ = F and Tϕ = G:
we call it a directed homotopy. Taking H0 and composing with (1.3.6), we obtain a
functor, which abusing notation we denote

H0(ϕ) : H0(A)→ MorH0(B).

This functor satisfies S ◦H0(ϕ) = H0(F ) and T ◦H0(ϕ) = H0(G), where S and T are,
again abusing notation, the source and target functors MorH0(B) → H0(B). Now, it
is well known that such a functor corresponds to a natural transformation

H0(ϕ) : H0(F )→ H0(G).

So, we see that a directed homotopy ϕ : F → G as above yields a natural transformation
H0(F ) → H0(G). Notice, moreover, that ϕ is a right homotopy if (and only if) H0(ϕ)
is a natural isomorphism.

The author is pretty convinced that directed homotopies, in the case that A is
cofibrant, are to be identified with morphisms F → G in Z0(RHom(A,B)): since A is
cofibrant, it seems to be ok to assume that objects of RHom(A,B) are dg-functors. The
above procedure should yield a functor

Z0(RHom(A,B))→ Fun(H0(A), H0(B)),

which should induce (an incarnation of) the functor ΦA→B which we talked about in the
Introduction. Unfortunately, the author doesn’t know a precise proof of this. We will
be able to give other sensible definitions of ΦA→B in the following chapters; nonetheless,
we will obtain some results of “lifting of natural transformations to homotopies”: even
if there is no formal justification (yet), the reader can relate them to the corresponding
properties of ΦA→B.

Dg-categories concentrated in degree 0

Let A be a dg-category. We say that A is concentrated in degree 0 if, for any A,B ∈ A,
we have A(A,B)i = 0 for all i 6= 0. We can view a given k-linear category B as a
dg-category concentrated in degree 0, if we endow any hom-set of B with the trivial
graded decomposition and differential. Therefore, we obtain a fully faithful functor

k-Cat ↪→ dgCat, (1.3.7)

which will be often thought as an inclusion. With this convention, if A is a dg-category
concentrated in degree 0, we may identify A = Z0(A) = H0(A).

Also, it is interesting to consider dg-categories with cohomology concentrated in degree
0, namely, dg-categories A such that H i(A(A,B)) = 0 for all i 6= 0, for any A,B ∈ A:
in such a case, a weaker form of the above identification A = H0(A) holds. In order to
make this precise, we define a dg-category A≤0 as follows: Ob A≤0 = Ob A, and for any
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A,B ∈ Ob A we set 
A≤0(A,B)n = A(A,B) if n < 0,
A≤0(A,B)n = 0 if n > 0,
A≤0(A,B)0 = Z0(A(A,B)),

the differential on A≤0(A,B) being induced by the one on A(A,B); composition maps
are obtained by restriction, too. There is a natural inclusion dg-functor

A≤0 → A, (1.3.8)
which is the identity on objects and the inclusion map A≤0(A,B) ↪→ A(A,B) on hom-
complexes (A,B ∈ Ob A). We also define a natural projection dg-functor

A≤0 → H0(A), (1.3.9)
which is the identity on objects and the natural projection map

A≤0(A,B)→ H0(A(A,B))
on hom-complexes (here we view H0(A) as a dg-category concentrated in degree 0).
Notice that the definitions of A≤0 and the above dg-functors don’t require any hypothesis
on A. Nevertheless, if A has cohomology concentrated in degree 0, it is immediately
shown that both functors are quasi-equivalences. We sum up this result in the following:
Proposition 1.3.15. Let A be a dg-category such that H i(A(X,Y )) = 0 for any X,Y ∈
A, i 6= 0. Then we have natural quasi-equivalences

H0(A)← A≤0 → A,
the first functor being the natural projection (1.3.9) and the second one being the inclusion
(1.3.8). In particular, A is quasi-equivalent to H0(A).
Remark 1.3.16. Let ∆1 be the standard 1-simplex k-category, namely, the category which
is freely generated over k by the diagram 0 → 1. Namely, denoting by k〈S〉 the free
k-module over a set S:

∆1(0, 1) = k,
∆1(1, 0) = 0,
∆1(0, 0) = k〈1〉,
∆1(1, 1) = k〈1〉,

and composition is given by multiplication in k. We view it as a dg-category concentrated
in degree 0. It is well-known that the category of morphisms of a k-category C can be
identified with Fun(∆1,C). Then, it is natural to expect something similar about the
dg-category of homotopy coherent morphisms Mor A of a dg-category A. Indeed, it can
be shown that there is a quasi-equivalence

RHom(∆1,A)
qe
≈ Mor A. (1.3.10)

We won’t give a proof of this fact; a possible technique involves the description of
RHom(∆1,A) by means of A∞-functors, as we will explain in Chapter 5.



Chapter 2

Basic dg-category theory, II

2.1 Ends and coends
Let A be a dg-category, and let F : Aop⊗A→ Cdg(k) be a dg-bi(endo)module. The aim
is to construct a complex which (co)equalises the right and left actions of A on F . This
leads to the definition of (co)end, given in general for dg-functors Aop ⊗A→ B. These
notions will give us some very useful computational tools. This section is devoted to the
development of ends and coends in dg-category theory; a good readable introduction to
(co)end calculus in ordinary category theory can be found in [Lor15]. Our treatment is
just a particular case of the definitions and results given in enriched category theory:
possible references for the general setting are [Kel05] or [Dub70].

Definition 2.1.1. Let F : Aop ⊗ A → B be a dg-functor. An end of F is an object
XF ∈ B together with closed degree 0 maps

εA : XF → FAA

for all A ∈ A, satisfying the following universal property:

X ′

fA′

��

fA

$$

f

!!

XF

εA′
��

εA
// FAA

FAh
��

FA
′

A′

Fh
A′ // FAA′

(2.1.1)

that is, for any h ∈ A(A,A′) the above square with vertex XF is commutative, and for
any X ′ together with closed degree 0 maps fA : X ′ → FAA such that the “curved square”
with vertex X ′ is commutative, there exists a unique closed degree 0 map f : X ′ → XF

such that fA = εAf for all A ∈ A.

Dualising, we get the definition of coend:

21
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Definition 2.1.2. Let F : Aop ⊗ A → B be a dg-functor. A coend of F is an object
YF ∈ B together with closed degree 0 maps

ηA : FAA → YF

for all A ∈ A, satisfying the following universal property:

FAA′

Fh
A′
��

FAh // FAA

ηA

�� gA

��

FA
′

A′
ηA′ //

gA′
++

YF

g

  

Y ′,

(2.1.2)

that is, for any h ∈ A(A′, A) the above square with vertex YF is commutative, and for
any Y ′ together with closed degree 0 maps gA : FAA → Y ′ such that the “curved square”
with vertex Y ′ is commutative, there exists a unique closed degree 0 map g : YF → Y ′

such that gA = gηA for all A ∈ A.

Remark 2.1.3. Ends and coends are defined as couples (XF , (εA)) or (YF , (ηA)); we will
often abuse notation and refer to them as their underlying objects XF and YF .

As for any object defined with a universal property, ends and coends, if they exist, are
uniquely determined up to canonical isomorphism, so that we may speak of the (co)end
of a dg-functor F : Aop ⊗A → B. We will adopt the integral notation: the end of F
will be denoted by ∫

A
F (A,A) =

∫
A
FAA , (2.1.3)

and the coend of F will be denoted by

∫ A

F (A,A) =
∫ A

FAA . (2.1.4)

The existence of ends and coends is not assured in general; however, it holds true for
bimodules, i.e. dg-functors Aop ⊗A→ Cdg(k).

Proposition 2.1.4. Let F : Aop ⊗A→ Cdg(k) be an A-A-bimodule. Then, the end of
F is isomorphic to the subcomplex of

∏
A∈A F (A,A) defined by

VF = {ϕ = (ϕA)A∈A : fϕA = (−1)|f ||ϕ|ϕA′f ∀ f ∈ A(A,A′)}.

The map εA : VF → F (A,A) is defined by ϕ 7→ ϕA.
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Proof. Let X be a complex, and let ξA : X → F (A,A) be chain maps such that the
following diagram is commutative:

X
ξA //

ξA′
��

F (A,A)

F (1A⊗f)
��

F (A′, A′)
F (f⊗1A′ )// F (A,A′),

for all f : A→ A′. This means that, for all x ∈ X,

fξA(x) = (−1)|x||f |ξA′(x)f,

employing the left-right action notation. We look for a chain map ξ : X → VF such that

ξ(x)A = ξA(x)

for all x ∈ X. Clearly, this identity uniquely defines ξ. Since the ξA are chain maps,
so is ξ; the above commutativity of the ξA with the left and right actions ensure that ξ
takes values in VF , and we are done.

From this characterisation we immediately obtain the following important corollary:

Corollary 2.1.5. Let F,G : A → B be dg-functors. Then, the complex of dg-natural
transformation Natdg(F,G), together with the canonical maps

Natdg(F,G)→ B(F (A), G(A)),
ϕ 7→ ϕA,

is an end of the bimodule hFG = B(F (−), G(−)):∫
A

B(F (A), G(A)) ∼= Natdg(F,G). (2.1.5)

Proposition 2.1.6. Let F : Aop ⊗A → Cdg(k) be an A-A-bimodule. Then, the coend
of F is isomorphic to the complex

WF = coker

 ⊕
A1,A2∈A

A(A2, A1)⊗F (A1, A2) −→
⊕
A∈A

F (A,A)
)

f ⊗ x 7→ fx− (−1)|f ||x|xf,

together with the natural maps

ηA : F (A,A)→
⊕
A′

F (A′, A′)→WF .
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Proof. Let X be a complex, and let ξA : F (A,A) → X be chain maps such that the
following diagram is commutative:

F (A,A′)
FAf
//

F f
A′
��

F (A,A)

ξA
��

F (A′, A′)
ξA′ // X,

for all f : A′ → A. This means that, for any x ∈ F (A,A′):

ξA(fx) = (−1)|f ||x|ξA′(xf).

Hence, we find that the composition

⊕
A1,A2

A(A2, A1)⊗ F (A1, A2)→
⊕
A

F (A,A) ⊕ξA−−→ X

is zero, and so ⊕ξA factors through a unique map ξ : WF → X. This is precisely the
required universal property.

In the following, we explore the properties of ends and coends, and we develop the
tools of (co)end calculus.

Definition 2.1.7. Let F : Aop ⊗ A → B and G : B → C be dg-functors. Assume
that (

∫
A F (A,A), (εA)) is an end of F . We say that G preserves the end

∫
A F (A,A) if

(G (
∫
A F (A,A)) , (G(εA))) is an end of GF . Dualising, we directly get the definition of

preservation of coends.

We will often allow ourselves to abuse notation and write for instance

G(
∫
A
F (A,A)) ∼=

∫
A
GF (A,A),

to mean that G preserves the end of F . The following is an important result:

Proposition 2.1.8. The hom-functor preserves ends. That is, given a dg-functor
F : Aop ⊗A→ B and assuming that

∫
A F (A,A) and

∫ A F (A,A) both exist, then:

B
(
B,

∫
A
F (A,A)

)
∼=
∫
A

B(B,F (A,A)), (2.1.6)

B
(∫ A

F (A,A), B
)
∼=
∫
A

B(F (A,A), B), (2.1.7)

for all B ∈ B.
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Proof. We prove (2.1.6), the other statement being dual. We have to check that, if
εA :

∫
A F (A,A)→ F (A,A) are the canonical maps associated to the end of F , then the

family of maps

hBεA = B(B, εA) = (εA)∗ : B
(
B,

∫
A
F (A,A)

)
→ B(B,F (A,A))

satisfies the universal property of
∫
A B(B,F (A,A)):

X

ξA′

##

ξA

**

ξ

''

B(B,
∫
A F (A,A))

(εA′ )∗
��

(εA)∗
// B(B,F (A,A))

hB
F (1A⊗f)
��

B(B,F (A′, A′))
hB
F (f⊗1A′ )// B(B,F (A,A′)).

Let x ∈ X. Then, we have the following diagram:

B

ξA′ (x)

  

ξA(x)

((

ξ(x)
%%∫

A F (A,A)
εA′

��

εA
// F (A,A)

F (1A⊗f)
��

F (A′, A′)
F (f⊗1A′ )// F (A,A′).

So, we find a unique ξ(x) ∈ Z0(B(B,
∫
A F (A,A)) such that εA ◦ ξ(x) = ξA(x). By

this uniqueness property, we easily prove that x 7→ ξ(x) defines a chain map X →
B(B,

∫
A F (A,A)). By construction, it satisfies (εA)∗ ◦ ξ = ξA, and it is the unique with

this property.

Remark 2.1.9. The isomorphisms (2.1.6) and (2.1.7) are actually a stronger (yet equiv-
alent) version of the universal properties which define ends and coends. Recalling the
characterisation of ends of Cdg(k)-valued dg-functors of Proposition 2.1.4, we see for
instance that (2.1.6) is equivalent to the following statement: for any family of maps
ξA : B → F (A,A) of degree p such that the following diagram

B
ξA //

ξA′
��

F (A,A)

F (1A⊗f)
��

F (A′, A′)
F (f⊗1A′ )// F (A,A′)

is commutative up to the sign (−1)pq, for all f : A→ A′ of degree q, there exists a unique
ξ : B →

∫
A F (A,A) of degree p such that εAξ = ξA for all A ∈ A.
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We are now able to show that ends and coends are dg-functorial. We write down
statements only for ends, the case of coends being analogous.
Proposition 2.1.10 (Dg-functoriality). Let F,G : Aop⊗A→ B be dg-functors, and as-
sume that

∫
A F (A,A) and

∫
AG(A,A) exist. If ϕ : F → G is a dg-natural transformation,

then there exists a natural morphism∫
A
ϕ :

∫
A
F (A,A)→

∫
A
G(A,A).

The mapping ϕ 7→
∫
A ϕ is a chain map, and moreover we have∫

A
ψϕ =

∫
A
ψ ◦

∫
A
ϕ,∫

A
1F = 1∫

A
F (A,A),

assuming ψ : G→ H and the existence of
∫
AH(A,A).

Proof. Define
∫
A ϕ with the strong universal property explained in Remark 2.1.9:∫

A F (A,A)

ϕA′,A′εA′

##

ϕA,AεA

))

∫
A
ϕ

''∫
AG(A,A)

εA′

��

εA
// G(A,A)

��

G(A′, A′) // G(A,A′).

The properties required follow by uniqueness arguments.

Remark 2.1.11. Let F : Aop⊗A⊗C→ B be a dg-functor. Assume that, for all C ∈ C,
the end

∫
A F (A,A,C) exists. Then, it is dg-functorial in C. indeed, given f : C → C ′,

we obtain a dg-natural transformation

ϕf = F (−,−, f) : F (−,−, C)→ F (−,−, C ′)

of functors Aop ⊗A→ B, and by dg-functoriality we get a natural morphism:∫
A
ϕf :

∫
A
F (A,A,C)→

∫
A
F (A,A,C ′).

The mapping f 7→ ϕf 7→
∫
A ϕf is dg-functorial, so in the end we get a dg-functor∫

A
F (A,A,−) : C→ B,

together with natural transformations

εA :
∫
A
F (A,A,−)→ F (A,A,−).

This is the “end with parameters”. The same discussion can obviously be done for
coends.
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The following result is an “interchange law” for (co)ends. With the integral notation,
it becomes a “categorical Fubini theorem”. We give the statement for ends:
Proposition 2.1.12 (“Fubini theorem”). Let F : Aop ⊗ Bop ⊗ A ⊗ B → C be a dg-
functor. Assume that for all A,A′ ∈ A, the end∫

B
FA,BA′,B

exists. Then, there is a natural isomorphism:∫
(A,B)

FA,BA,B
∼=
∫
A

∫
B
FA,BA,B ,

whenever one of these two ends exists. Moreover, if for all B,B′ ∈ B, the end
∫
A F

A,B
A,B′

also exists, then ∫
(A,B)

FA,BA,B
∼=
∫
A

∫
B
FA,BA,B

∼=
∫
B

∫
A
FA,BA,B , (2.1.8)

whenever one of these ends exist.

Proof. Assume that
∫
(A,B) F

A,B
A,B exists, and let ε(A,B) :

∫
(A,B) F

A,B
A,B → FA,BA,B be the nat-

ural associated maps. Apply the universal property of
∫
B F

A,B
A,B (together with the asso-

ciated maps pB :
∫
B F

A,B
A,B → FA,BA,B ):

∫
(A,B) F

A,B
A,B

ε(A,B)
//

qA
��

FA,BA,B

∫
B F

A,B
A,B .

pB

::

So, (
∫
A,B F

A,B
A,B , (qA)) satisfies the universal property of

∫
A

∫
B F

A,B
A,B . Conversely, assume

that (
∫
A

∫
B F

A,B
A,B , (qA)) is an end of

∫
B F

−,B
−,B ; then, define ε(A,B) :

∫
A

∫
B F

A,B
A,B → FA,BA,B

as ε(A,B) = pBqA, and check that they satisfy the universal property of
∫

(A,B) F
A,B
A,B . We

leave the reader to fill in the details, and to conclude with the proof of (2.1.8).

Yoneda lemma, revisited

The complex of natural transformations between two dg-functors can be written as an
end, as we have already seen in Corollary 2.1.5. So, it is clear that Yoneda lemma
can be restated employing this formalism. This also allows us to give a proof which is
completely based on the suitable universal property.
Proposition 2.1.13 (Yoneda lemma). Let A be a dg-category, let F : A→ Cdg(k) and
G : Aop → Cdg(k) be respectively a left and a right A-dg-module. Then:

F− ∼=
∫
A

Cdg(k)(h−A, FA),

G− ∼=
∫
A

Cdg(k)(hA−, GA).
(2.1.9)
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where the natural maps εA : F− → Cdg(k)(h−A, FA) and ε′A : G− → Cdg(k)(hA−, GA) are
defined respectively by

εA(x)(f) = (−1)|x||f |fx,
ε′A(y)(g) = yg.

Proof. We prove the second statement, the other one being dual. Let V be a complex,
let X ∈ A and let ξA : V → Cdg(k)(hAX , GA) be chain maps such that the diagram

V
ξA //

ξA′
��

Cdg(k)(hAX , GA)

(Gg)∗
��

Cdg(k)(hA′X , GA
′)

(hgX)∗
// Cdg(k)(hAX , GA

′)

is commutative for all g : A′ → A. We want to define ξ : V → GX such that ε′Aξ = ξA
for all A ∈ A. In particular, we require that

ε′A(ξ(v))(h) = ξ(v)h = (−1)|v||h|G(h)(ξ(v)) = ξA(v)(h),

for all h : A→ X. So, we are forced to set

ξ(v) = ξX(v)(1X).

We leave the reader to check that this definition satisfies the required properties (it is a
rather tedious but straightforward verification).

Assuming we have already proved Yoneda lemma with the usual direct argument,
we can give a shorter proof of the isomorphisms (2.1.9): indeed, again concentrating on
the second one, we just have to check that the diagram

Natdg(hX , G) ∼ //

��

GX

ε′A

xx

Cdg(k)(hAX , GA)

ϕ � //
_

��

ϕX(1X)5

zz
ϕA

is commutative.

Interestingly, there is a dual version of Yoneda lemma, which involves coends:

Proposition 2.1.14 (Co-Yoneda lemma). Let A be a dg-category, let F : A → Cdg(k)
and G : Aop → Cdg(k) be respectively a left and a right A-dg-module. Then:

F− ∼=
∫ A

hA− ⊗ FA,

G− ∼=
∫ A

GA ⊗ h−A,
(2.1.10)
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where the associated maps ηA : hA− ⊗ FA → F− and η′A : GA ⊗ h−A → G− are induced by
the (left and right) actions of A:

ηA(f ⊗ x) = fx,

η′A(y ⊗ g) = yg.

Proof. We prove only the first isomorphism, the other one being dual. Let V be a
complex, and let X ∈ A. We have the following chain of natural isomorphisms:∫

A
Cdg(k)(hAX ⊗ FA, V )

∼=
∫
A

Cdg(k)(hAX ,Cdg(k)(FA, V ))

(Yon.)∼= Cdg(k)(FX , V ).

This implies that FX represents the dg-functor V 7→
∫
A Cdg(k)(hAX ⊗ FA, V ), and so by

definition (recall the “strong universal property, Remark 2.1.9) it is the expected coend:

FX ∼=
∫ A

hAX ⊗ FA.

To understand what are the associated maps ηA, we follow the above chain backwards,
starting from the unit 1FX and keeping track of its image:

1FX 7→ (εA(1X)(f) = F (f)∗(1X) = F (f))
7→ (ηA(f ⊗ x) = F (f)(x) = fx).

The above proof follows a typical pattern in (co)end calculus. To show that a certain
object X is a (co)end, we try to prove that it represents the suitable functor, and in doing
so we make use of the computational tools developed so far: (co)end preservation, dg-
functoriality, Fubini theorem, and so on. Typically, we end up writing a chain of natural
isomorphisms. At every step, we should keep track of the natural maps associated to
the written (co)end; the isomorphisms of the chain will always preserve them, and this
knowledge allows us to understand what are the natural maps associated to the object
X, as we did in the second part of the above proof.

2.2 (Co)complete dg-categories

Just as in ordinary category theory, there is a notion of completeness and cocompleteness
also in dg-category theory, which stems from the definitions given in general enriched
category theory. Our treatment here will be based on (co)ends and (co)tensors. Ends
and coends have already been extensively studied in the previous section; tensors and
cotensors are “external versions” respectively of the tensor product of complexes and of
the internal hom in the monoidal category C(k).
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Definition 2.2.1. Let A be a dg-category, and let V ∈ Cdg(k) and A ∈ A. A tensor (or
copower) of V and A is an object V ⊗A ∈ A together with an isomorphism of complexes:

A(V ⊗A,B) ∼−→ Cdg(k)(V,A(A,B)), (2.2.1)

natural in B. Dually, a cotensor (or power) of V and A is an object [V,A] ∈ A together
with an isomorphism of complexes:

A(B, [V,A]) ∼−→ Cdg(k)(V,A(B,A)), (2.2.2)

natural in B.
If A contains all tensors, we say that it is tensored (or copowered). Dually, if it

contains all cotensors, we say that it is cotensored (or powered).

Remark 2.2.2. The dg-category Cdg(k) is tensored and cotensored. Tensors V ⊗W are
given by the ordinary tensor products, whereas cotensors [V,W ] are given by the internal
hom-complexes Cdg(k)(V,W ).

If A is tensored, then the above definition yields a unique dg-bifunctor

−⊗− : Cdg(k)⊗A→ A (2.2.3)

such that the isomorphism (2.2.1) becomes natural in all variables. Dually, if A is
cotensored, then we get a unique dg-bifunctor

[−,−] : Cdg(k)op ⊗A→ A (2.2.4)

such that the isomorphism (2.2.2) becomes natural in all variables. Moreover, we have
dg-adjunctions:

−⊗A a A(A,−) : Cdg(k)� A, (2.2.5)
A(−, A) a [−, A] : Aop � Cdg(k), (2.2.6)

for all A ∈ A, if A is respectively tensored or cotensored.
Now, we are able to define (co)completeness for dg-categories:

Definition 2.2.3. Let A be a dg-category. We say that A is complete if it is cotensored
and any dg-functor F : Bop ⊗B→ A (with B small) admits an end

∫
B F (B,B) in A.

Dually, we say that A is cocomplete if it is tensored and any dg-functor F : Bop⊗B→
A (with B small) admits a coend

∫ B F (B,B) in A.

The dg-category of complexes Cdg(k) is complete and cocomplete, since it is tensored
and cotensored, and we have already proven that ends and coends of bimodules Bop ⊗
B → Cdg(k) always exists. The (co)completeness of a given dg-category implies the
(co)completeness of the dg-category of functors with values in that dg-category:

Proposition 2.2.4. Let B and A be dg-categories. If A is complete (resp. cocomplete)
then so is Fundg(B,A). In particular, the dg-category Cdg(B) is both complete and
cocomplete.
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Proof. The idea is to define (co)ends and (co)tensors componentwise. Let F : Cop⊗C→
Fundg(B,A). We may view it as a functor F : Cop⊗C⊗B→ A. So, by Remark 2.1.11,
the (co)end of F exists if and only if the (co)end of F (−,−, B) exists for all B ∈ B.
Coming to (co)tensors, it should be clear that they are obtained from (co)tensors in A,
componentwise:

(V ⊗ F )(B) = V ⊗ F (B),
[V, F ](B) = [V, F (B)],

whenever F ∈ Fundg(B,A) and V ∈ Cdg(k).

Having defined (co)completeness as above, we are now interested in functors which
preserve (co)tensors and (co)ends. The notion of (co)end preservation was given in
Definition 2.1.7; (co)tensor preservation is defined in the obvious way, as follows. Given
a dg-functor F : A→ B, we say that F preserves the tensor V ⊗A if F (V ⊗A) is naturally
a tensor of V and F (A) in B: F (V ⊗A) ∼= V ⊗F (A); dually, we say that F preserves the
cotensor [V,A] if F ([V,A]) is naturally a cotensor of V and F (A): F ([V,A]) ∼= [V, F (A)].

Definition 2.2.5. Let F : A → B be a dg-functor. We say that F is continuous if it
preserves all ends and cotensors. Dually, we say that F is cocontinuous if it preserves
all coends and tensors.

Remark 2.2.6. (Co)completeness for enriched categories (in particular, dg-categories) –
and (co)continuity of enriched functors (in particular, dg-functors) – is usually given in
terms of the existence – or preservation – of weighted (co)limits: they are the reasonable
replacement of (co)limits in enriched category theory. Those weighted (co)limits can be
expressed in terms of (co)ends and (co)tensors (see [Rie14, Theorem 7.6.3]) and vice-
versa (see [Lor15, Example 4.11]). A detailed treatment of enriched (co)completeness is
contained in [Rie14, Sections 7.4 and 7.6] and [Kel05, Section 3.2].

The universal properties (2.2.2) and (2.2.1) directly tell us that the hom functors
A(−, A) and A(A,−) are continuous, since we have already proven in Proposition 2.1.8
end and coend preservation (beware that A(−, A) is contravariant, so it actually maps
tensors to cotensors and coends to ends). As in ordinary category theory, adjoint functors
have (co)continuity properties:

Proposition 2.2.7. Let F a G : A� B be adjoint dg-functors. Then, F is cocontinuous
and G is continuous.

Proof. It is a direct computation involving the continuity of the hom functor, precisely
as in ordinary category theory. The details are left to the reader.

Remark 2.2.8. The tensor product of complexes, being left adjoint to the internal hom
(and being symmetric), is cocontinuous in both variables. This observation will be useful
later on.
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Extensions of dg-modules

Here we recollect the basic results about restrictions and extensions of dg-modules along
dg-functors. Actually, they are a particular case of the more general notion of Kan
extensions.

Definition 2.2.9. Let K : A→ B and F : A→ C be dg-functors. A left Kan extension
of F along K is a dg-functor LanK(F ) : B→ C together with an isomorphism:

Natdg(LanK(F ), G) ∼−→ Natdg(F,G ◦K),

natural in G : B → C. Dually, a right Kan extension of F along K is a dg-functor
RanK(F ) : B→ C together with an isomorphism:

Natdg(G ◦K,F ) ∼−→ Natdg(G,RanK(F )),

natural in G : B→ C.

Clearly, left and right Kan extensions are characterised by universal properties. For
example, LanK(F ) comes with a natural transformation η : F → LanK(F ) ◦ K such
that for any α : F → G ◦ K there exists a unique α̃ : LanK(F ) → G such that α =
(α̃K)η. So, in short, Kan extensions are “lax universal extensions” along a given dg-
functor. If LanK(F ) and RanK(F ) exist for all F : A→ C, then LanK(−) and RanK(−)
define left and right dg-adjoints to the restriction functor K∗ = ResK : Fundg(B,C) →
Fundg(A,C):

LanK a K∗ a RanK . (2.2.7)

(Co)completeness properties of the target dg-category C give sufficient conditions to
the existence of Kan extensions. More precisely:

Proposition 2.2.10. Assume that C is cocomplete. Then, LanK(F ) exists for all dg-
functors F : A→ C, and it is given by

LanK(F )(−) ∼=
∫ A

h
K(A)
− ⊗ FA. (2.2.8)

Dually, assume that C is complete. Then, RanK(F ) exists for all F : A→ C, and it is
given by

RanK(F )(−) ∼=
∫
A

[h−K(A), FA]. (2.2.9)

Proof. We only prove the assertion about Ran, the other one being similar. Let G : B→
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C be a dg-functor. We compute directly:

Natdg(G,RanK(F )) ∼=
∫
B

C(GB,RanK(F )(B))

∼=
∫
B

C(GB,
∫
A

[hBK(A), FA])

∼=
∫
B

∫
A

C(GB, [hBK(A), FA])

∼=
∫
A

∫
B

Cdg(k)(hBK(A),C(GB, FA))

∼=
∫
A

C(GK(A), FA)
∼= Natdg(G ◦K,F ).

Every isomorphism of the above chain is natural; we used end calculus and the definition
of the power [hBK(A), FA].

From now on, for the sake of simplicity, we will always assume that the target dg-
category C is complete and cocomplete, so that Kan extensions always exist. the typical
situations are C = Cdg(k) and C = Fundg(D,Cdg(k)) (dg-categories of dg-modules).

If the dg-functor K : A → B along which we extend is fully faithful, then Kan
extensions are actual (not just lax) extensions:

Proposition 2.2.11. Let K : A → B be a fully faithful dg-functor. Then, for any
F : A→ C, the units

ηF : F → LanK(F ) ◦K,
εF : RanK(F ) ◦K → F

are natural isomorphisms. In particular, the dg-functors LanK and RanK are fully
faithful.

Proof. By Proposition 1.2.14, it suffices to show that there are isomorphisms F ∼=
LanK(F ) ◦K and F ∼= RanK(F ) ◦K, natural in F . We detail the first one, the other
being similar. Let G : A→ C. We have:

Natdg(LanK(F )(K(−)), G) ∼=
∫
A′

C
(∫ A

h
K(A)
K(A′) ⊗ FA, GA′

)
∼=
∫
A

∫
A′

C(hK(A)
K(A′) ⊗ FA, GA′)

∼=
∫
A

∫
A′

Cdg(k)(hK(A)
K(A′),C(FA, GA′))

∼=
∫
A

∫
A′

Cdg(k)(hAA′ ,C(FA, GA′))

∼=
∫
A

C(FA, GA)
∼= Natdg(F,G).
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In the case when C = Cdg(k), the above discussion gives the general results about
extensions of dg-modules. We write

IndF : Cdg(A)→ Cdg(B) (2.2.10)

for the left Kan extension LanF op along F op : Aop → Bop. It is the left adjoint of
the restriction functor ResF : Cdg(B) → Cdg(A). By Proposition 2.2.10, we may write
(swapping the arguments of the tensor):

IndF (M)− ∼=
∫ A

MA ⊗ h−F (A). (2.2.11)

The extension functor IndF preserves representable A-modules:

Proposition 2.2.12. The diagram

A F //� _

hA
��

B� _
hB
��

Cdg(A) IndF // Cdg(B)

is commutative up to isomorphism. In other words, IndF (hA) ∼= hF (A) for all A ∈ A.

Proof. We compute:

IndF (hA)X

∼=
∫ A′

hA
′

A ⊗ hXF (A′)

∼= hXF (A),

where the last isomorphism follows from co-Yoneda lemma (2.1.10).

2.3 Pretriangulated dg-categories
The relevance of dg-categories relies in the crucial observation that they can be employed
as higher categorical models for triangulated categories. The key point is that we have
a notion of functorial shifts of objects, and – above all – of functorial cones of (closed,
degree 0) morphisms.

Definition 2.3.1. Let A be a dg-category, A ∈ A and n ∈ Z. A n-shift of A is an
object A[n] ∈ A together with two closed morphisms

1(A,n,0) : A[n]→ A, 1(A,0,n) : A→ A[n], (2.3.1)

such that |1(A,n,0)| = n, |1(A,0,n)| = −n and

1(A,n,0)1(A,0,n) = 1A, 1(A,0,n)1(A,n,0) = 1A[n].



2.3. PRETRIANGULATED DG-CATEGORIES 35

Given a morphism f in A, we will often employ the notation

f [n] = 1(B,0,n)f1(A,n,0) : A[n]→ B[n] (n ∈ Z). (2.3.2)

A n-shift, if it exists, is unique up to a natural dg-isomorphism: if A[n] and A[n]′
are two n-shifts of an object A ∈ A, with associated morphisms 1(A,n,0), 1(A,0,n) and
1′(A,n,0), 1′(A,0,n), then clearly 1′(A,0,n)1(A,n,0) and 1(A,0,n)1′(A,n,0) are closed degree 0 maps,
each one inverse to the other.

Next, we define the cone of a degree 0 morphism: it is a direct generalization of the
mapping cone of a chain map of complexes.

Definition 2.3.2. Let A be a dg-category and let f : A → B be a closed degree 0
morphism in A; suppose moreover that A contains the shift A[1]. A cone of f is an
object C(f) ∈ A together with degree 0 morphisms

A[1] oo
p

i // C(f) oo
j

s // B, (2.3.3)

such that
pi = 1A[1], sj = 1B, si = 0, pj = 0, ip+ js = 1C(f), (2.3.4)

and
dj = 0, dp = 0, di = jf1(A,1,0), ds = −f1(A,1,0)p. (2.3.5)

Remark 2.3.3. Conditions (2.3.4) tell us that any cone C(f) of f is a biproduct of A[1]
and B in A, viewed as a k-linear category, with canonical maps i, j, p, s. We shall adopt
matrix notation when working with maps to or from a cone:

u = (u1, u2) : C(f)→ D

means that u ◦ i = u1 and u ◦ j = u2, and

v =
(
v1
v2

)
: D → C(f)

means that p ◦ v = v1 and s ◦ v = v2. Conditions (2.3.5) allow us to easily describe
the differential of maps to and from a cone. Namely, if u = (u1, u2) : C(f) → D and
v = ( v1

v2 ) : D → C(f), for a given f : A→ B, then

du = (du1 − (−1)|u|u2f1(A,1,0), du2), dv =
(

dv1
dv2 + f1(A,1,0)v1

)
. (2.3.6)

The cone of a morphism satisfies a universal property, as follows:

Proposition 2.3.4. Let A be a dg-category, and let f : A → B be a closed degree 0
morphism. View the inclusion map i : A[1]→ C(f) as a degree −1 morphism A→ C(f).
Then, di = jf , and for any closed degree 0 map j′ : B → X and any degree −1 map
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i′ : A→ X such that di′ = j′f , there exists a unique closed degree 0 map h : C(f)→ X
such that hj = j′ and hi = i′:

B

j
�� j′

��

A

f
==

i //

i′ ,,

C(f)

h
""

X.

(2.3.7)

Proof. Since C(f) is a biproduct of A[1] and B in A viewed as an ordinary category, we
are forced to define:

h = (i′1(A,1,0), j
′).

The degree of h is clearly 0. Then, (2.3.6) allows us to compute the differential of h, and
show immediately that dh = 0.

The above universal property, as every universal property, implies that the cone of
a morphism is uniquely determined up to a unique dg-isomorphism. We remark that
we could also define C(f) by means of the above universal property, and obtain our
definition as a characterisation.
Remark 2.3.5. It is worth noticing that shifts and cones can be characterised by means
of tensors and coends. Let Sn = k[n] be the complex with the only term k concentrated
in degree −n. Moreover, let Dn be the complex

· · · // 0 // k k // 0 // · · · ,

where the first k is in degree −n. There is a natural inclusion Sn ↪→ Dn+1:

· · · // 0 // 0

��

// k // 0 // · · ·

· · · // 0 // k k // 0 // · · · .

We remark that we have a natural isomorphism of complexes:

Cdg(k)(Sn, V ) ∼= V [−n], f 7→ f(1).

Let A be a dg-category, and let A ∈ A. The tensor Sn ⊗ A can be identified with the
shift A[n], indeed:

A(Sn ⊗A,B) ∼= Cdg(k)(Sn,A(A,B))
∼= A(A,B)[−n]
∼= A(A[n], B),



2.3. PRETRIANGULATED DG-CATEGORIES 37

where the last isomorphism is induced by composition with 1(A,n,0). Moreover, the
tensor Dn+1 ⊗A can be identified with the cone C(1A[n]) of the identity on A[n] (it is a
rather simple exercise: just check the universal property by comparing the formulae of
differentials (2.3.6) and (1.1.3)).

Now, let f : A→ B be a closed degree 0 morphism in A. We identify it to a dg-functor
f : ∆1 → A such that f(0) = A and f(1) = B. Moreover, let W : (∆1)op → Cdg(k) the
dg-functor defined as follows:

W (0) = D1, W (1) = S0, W ((0→ 1)op) = S0 ↪→ D1.

Then, we have that

C(f) ∼=
∫ i∈∆1

W (i)⊗ f(i), (2.3.8)

assuming that A is tensored. In order to prove this, we start by noticing that the
diagram

W (1)⊗ f(0) //

��

W (1)⊗ f(1)

W (0)⊗ f(0)
translates to

A
f

//

jA
��

B

C(1A),

where jA = ( 0
1 ) is the canonical inclusion of A in C(1A). Now, we have closed and

degree 0 morphisms j : B → C(f) and i1 : C(1A)→ C(f). The first one is the canonical
inclusion map into C(f), whereas the second one is defined as follows:

i1 = (i, jf) : C(1A)→ C(f),

where i : A[1] → C(f) is the canonical inclusion map. Since di = jf1(A,1,0), the above
map is closed, and moreover the diagram

A
f

//

( 0
1 )
��

B

j
��

C(1A) i1 // C(f)

is commutative. Also, notice that any degree 0 map v = (v1, v2) : C(1A) → X is closed
if and only if v21(A,1,0) = dv1, and any commutative diagram

A
f
//

( 0
1 )
��

B

u

��

C(1A) v // X
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gives dv1 = uf1(A,1,0). Now, it should be clear that the universal property of the coend
(2.3.8) is the same as the universal property (2.3.7) of C(f).

A sequence of the form
A

f−→ B
j−→ C(f) p−→ A[1] (2.3.9)

is called preexact triangle, or pretriangle; notice that any dg-functor preserves shifts,
cones and preexact triangles. Now, we can give the following definition:

Definition 2.3.6. Let A be a dg-category. We say that A is strongly pretriangulated if
any object A ∈ A admits all shifts A[n] in A, and if A contains the cone of any closed
degree 0 morphism.

The above Remark 2.3.5 immediately gives the following:

Proposition 2.3.7. Cocomplete dg-categories are strongly pretriangulated. In particu-
lar, Cdg(k) is strongly pretriangulated, and Cdg(A) is strongly pretriangulated for any
dg-category A.

Also, an “objectwise” argument similar to that of Proposition 2.2.4 easily yields the
following:

Proposition 2.3.8. Let A and B be dg-categories. If B is strongly pretriangulated,
then Fundg(A,B) is strongly pretriangulated.

Pretriangulated hulls

A feature of the definition of strongly pretriangulated dg-category is that it is “intrin-
sic”, in the sense that it is not an additional structure we endow something with, as
happens with triangulated categories. Moreover, the rigidity of dg-categories allows
us to make useful functorial constructions. A simple way to define them employs the
Yoneda embedding A ↪→ Cdg(A), as in the following definition:

Definition 2.3.9. Let A be a dg-category. The pretriangulated hull or pretriangulated
envelope of A is the dg-category pretr(A), which is by definition the smallest full dg-
subcategory of Cdg(A) which contains the image of A under the Yoneda embedding, and
which is strongly pretriangulated and closed under dg-isomorphisms.

In other words, pretr(A) is obtained from A by adding shifts and cones of morphisms
between representable modules. The Yoneda embedding can be restricted to a dg-functor

A ↪→ pretr(A). (2.3.10)

We have the following characterisation:

Proposition 2.3.10. A dg-category is strongly pretriangulated if and only if the re-
stricted Yoneda embedding A ↪→ pretr(A) is a dg-equivalence.
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Proof. Clearly, if A ↪→ pretr(A) is a dg-equivalence, then A is strongly pretriangulated,
being dg-equivalent to a strongly pretriangulated dg-category. Conversely, assume that
A is strongly pretriangulated. Then, its closure under dg-isomorphisms in Cdg(A) is
equivalent to A, and it coincides with pretr(A), by definition of pretriangulated hull.

As we may expect, a dg-functor F : A → B induces a dg-functor pretr(A) →
pretr(B) between the pretriangulated hulls. Indeed, consider the induction dg-functor
IndF : Cdg(A)→ Cdg(B). Then, since any X ∈ pretr(A) is obtained from representable
A-modules by means of iterated shifts and cones and IndF preserves shifts and cones
(being a dg-functor), we see that IndF (X) ∈ pretr(B), so in the end it induces a dg-
functor

pretr(F ) : pretr(A)→ pretr(B). (2.3.11)

Moreover, by Proposition 2.2.12, the following diagram is commutative:

A

θA
��

F // B

θB
��

pretr(A)pretr(F )
// pretr(B),

(2.3.12)

where θA and θB are the restricted Yoneda embeddings of A and B.
Now, we can prove that the pretriangulated hull of a dg-category satisfies a 2-

categorical universal property, which characterises it up to dg-equivalence:

Proposition 2.3.11. Let A be a dg-category, and let B be a strongly pretriangulated dg-
category. Then, the restricted Yoneda embedding θA : A ↪→ pretr(A) induces a natural
dg-equivalence:

θ∗A : Fundg(pretr(A),B) ∼−→ Fundg(A,B). (2.3.13)

Proof. We give just the main ideas. A natural transformation of dg-functors F →
G : pretr(A) → B is uniquely determined by its restriction FθA → GθA : A → B:
this is because pretr(A) is obtained from A by iterated shifts and cones, which are
functorial, and the dg-functors F and G preserve them. This proves fully faithfulness of
θ∗A. Essential surjectivity is simple: given F : A→ B, then by (2.3.12) we immediately
see that θ−1

B ◦ pretr(F ) is in the essential inverse image of F . It should be noticed that
a quasi-inverse of θ∗A gives a left Kan extension of F along θA.

Another important feature of the pretriangulated hull is that it behaves well under
quasi-equivalences:

Lemma 2.3.12 ([BLL04, Remark 4.12]). Let A and B be dg-categories. If F : A→ B
is a quasi-equivalence, then pretr(F ) : pretr(A)→ pretr(B) is a quasi-equivalence.

Until now, we have explored the “strict” notion of pretriangulated category: in a
strongly pretriangulated dg-categories, we require the existence of shifts and cones up
to dg-isomorphism. This is somewhat against the philosophy of homotopy theory, for
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which the relevant constructions should be the homotopy invariant ones. So, we want to
define a dg-category to be pretriangulated if it contains (functorial) cones and shifts up to
homotopy equivalence. This can be formalised as follows, recalling the characterisation
of Proposition 2.3.10:

Definition 2.3.13. Let A be a dg-category. We say that A is pretriangulated if the
restricted Yoneda embedding

θA : A ↪→ pretr(A)
is a quasi-equivalence.

We shall come back to this notion in the following chapter; now, we just mention the
fundamental result which links pretriangulated dg-categories to triangulated categories:

Theorem 2.3.14. If A is pretriangulated, then H0(A) is a triangulated category, en-
dowed with the triangulated structure coming from A. Moreover, if F : A→ B is a dg-
functor between pretriangulated categories, H0(F ) : H0(A)→ H0(B) is an exact functor.

In particular, the category K(B) is triangulated for any dg-category B.

The proof of this theorem is quite long yet straightforward: it is analogous to the
proof that the homotopy category of complexes K(k) is triangulated. This serves as a
motivation of the following definition:

Definition 2.3.15. Let T be a triangulated category. A dg-enhancement (or simply
enhancement) of T is a pretriangulated dg-category A together with an exact equivalence
ε : H0(A)→ T.

The theoretical drawbacks of triangulated categories have motivated the research
on enhancements (existence and uniqueness problem). This is not the main interest of
this work, nonetheless we will encounter many examples of enhancement throughout the
thesis. Now, we just end the section (and the chapter) with a very simple characterisation
of quasi-equivalences between pretriangulated dg-categories:

Lemma 2.3.16. Let A and B be pretriangulated dg-categories, and let F : A → B be
a dg-functor. Then, F is a quasi-equivalence if and only if H0(F ) is an equivalence of
triangulated categories.

Proof. Left as an exercise: actually only shifts are needed.

Corollary 2.3.17. Let A and B be pretriangulated dg-categories, moreover let F̂ ∈
Hqe(A,B). Then, F is an isomorphism in Hqe if and only if H0(F̂ ) is an equivalence.

Proof. Represent F̂ as a roof:
A ≈←− Q(A) F ′−→ B.

If F̂ is an isomorphism, then the above F ′ is a quasi-equivalence, so in the end H0(F̂ ) is
an equivalence. Conversely, if H0(F̂ ) is an equivalence, then H0(F ′) is such, and so by
Lemma 2.3.16 it is a quasi-equivalence. We conclude that F̂ is an isomorphism in Hqe,
being represented by a roof of quasi-equivalences.



Chapter 3

Quasi-functors

In this chapter we go deeper into the homotopy theory of dg-categories: in particular, we
address the fundamental issue of quasi-functors, that is, the relevant “homotopy coherent
functors” between dg-categories. A way to describe them is by employing bimodules
and their derived categories. This approach also allows us to give a consistent notion of
adjoint quasi-functors.

3.1 The derived category
Let F ∈ Cdg(A) be a right A-dg-module. An important operation that can be performed
on F is taking its cohomology H∗(F ), which is defined termwise:

H∗(F )(A) = H∗(F (A)).

H∗(F ) is actually a right graded H∗(A)-module, that is, a graded functor

H∗(F ) : H∗(Aop)→ Gr(k)

(here Gr(k) denotes the graded category of graded k-modules). The right action of
H∗(A) on H∗(F ) is defined by

[x][f ] = [xf ],
projecting the action of A to the quotient. Denoting by Gr(H∗(A)) the graded category
of graded right H∗(A)-modules, we obtain a graded functor

H∗ : Z∗(Cdg(A))→ Gr(H∗(A)),
F 7→ H∗(F ),

(α : F → G) 7→ H∗(α),

where H∗(α) is defined by H∗(α)A([x]) = [αA(x)]. Restricting ourselves to degree 0
morphisms, we also get an ordinary functor

H∗ : C(A)→ Gr(H∗(A)),

where Gr(H∗(A)) is the (ordinary) category of graded right H∗(A)-modules.

41
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Remark 3.1.1. The above H∗ : Z∗(Cdg(A))→ Gr(H∗(A)) factors through the projection
functor Z∗(Cdg(A)) → H∗(Cdg(A)). Indeed, if a closed morphism α : F → G satisfies
[α] = [0] in K(A), then H∗(α) = 0. We abuse notation and write

H∗ : H∗(Cdg(A))→ Gr(H∗(A))

also for the induced functor. Restricting ourselves to degree 0 morphisms, we also get

H∗ : K(A)→ Gr(H∗(A)).

The above discussion can be specialised to degree 0 cohomology, yielding a k-linear
functor

H0 : C(A)→ Mod(H0(A)),

where the category Mod(H0(A)) is the k-linear category of right H0(A)-modules (that
is, k-linear functors H0(A)op → Mod(k)). As above, we also have the induced functor,
defined on the homotopy category:

H0 : K(A)→ Mod(H0(A)). (3.1.1)

Remark 3.1.2. We warn the reader of the potential confusion arising between projecting
a closed morphism α : F → G of right A-modules to [α] : F → G in H∗(Cdg(A)), and
taking its cohomologyH∗(α), which is a (graded) morphism of graded modulesH∗(F )→
H∗(G). [α] is just the cohomology class of a “strict” morphism α, whereas H∗(α) is the
actual graded cohomology of α, which in fact depends only on [α]. So, [α] is not a natural
transformation but, instead, an equivalence class of natural transformations; H∗(α), on
the other hand, is a natural transformation at the homotopy level.

Definition 3.1.3. Let α : F → G be a morphism in C(A). We say that α is a quasi-
isomorphism if

H∗(α) : H∗(F )→ H∗(G)

is an isomorphism.

Now, we would like to identify dg-modules up to quasi-isomorphism. Naively, given
A-dg-modules F,G, we define F ∼ G if there exists a quasi-isomorphism α : F → G.
This relation is reflexive (the identity map is a quasi-isomorphism) and transitive (the
composite of two quasi-isomorphisms is a quasi-isomorphism), but unfortunately it is
not symmetric. So, we define the quasi-isomorphism relation as the equivalence relation
generated by the above ∼. In particular, F and G are quasi-isomorphic if there exists a
zig-zag of quasi-isomorphisms:

F ← F1 → F2 ← · · · → G;

in this case, we write F
qis
≈ G. The machinery of localisations applies to this framework,

and leads to the following definition:
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Definition 3.1.4. Let A be a dg-category. The derived category D(A) of A is the
localisation of K(A) along quasi-isomorphisms:

D(A) = K(A)[Qis−1]. (3.1.2)

When A = k, viewing the base ring as a dg-category with a single object, its derived
category is by definition the derived category D(k) of complexes of k-modules. The well-
known results about D(k) have a direct generalisation to D(A) for any A. We recollect
them in the following statement.

Definition 3.1.5. Let A be a dg-category. A right A-dg-moduleM ∈ Cdg(A) is acyclic
if M(A) is an acyclic complex for all A ∈ A (or, equivalently, if H∗(M) ∼= 0). The full
dg-subcategory of Cdg(A) of acyclic modules is denoted by Ac(A).

Proposition 3.1.6 ([Kel06, Lemma 3.3]). D(A) has a natural structure of triangulated
category such that the localisation functor δ = δA : K(A)→ D(A) is exact.

A morphism α : F → G in K(A) is a quasi-isomorphism if and only if its cone C(α)
is acyclic. Moreover, D(A) is the Verdier quotient of K(A) modulo the acyclic modules:

D(A) ∼= K(A)/Ac(A). (3.1.3)

The localisation functor δ : K(A) → D(A) can (and will) be assumed to be the
identity on objects. Morphisms in D(A) are represented by “roofs” in K(A):

F
≈←− F ′ → G, (3.1.4)

where F ′ ≈−→ F is a quasi-isomorphism. The idea is that F ′ is suitable resolution of F .
In particular, we may assume it is a h-projective resolution:

Definition 3.1.7. Let F ∈ Cdg(A). F is h-projective if, for all N ∈ Ac(A), the complex
Cdg(A)(F,N) is acyclic. This equivalent to requiring that

H0(Cdg(A))(F,N) = K(A)(F,N) ∼= 0

for all N ∈ Ac(A). The full dg-subcategory of Cdg(A) of h-projective dg-modules is
denoted by h-proj(A).

H-projective modules can be characterised as follows:

Proposition 3.1.8 ([BL94, Proposition 10.12.2.2]). Let P ∈ Cdg(A) be a right A-dg-
module. Then, P ∈ h-proj(A) if and only if

δ : K(A)(P,M)→ D(A)(P,M)

is an isomorphism for all M ∈ Cdg(A).

Remark 3.1.9. From the above proposition, we see that any quasi-isomorphism between
h-projective dg-modules is actually a homotopy equivalence.



44 CHAPTER 3. QUASI-FUNCTORS

The following result ensures the existence of h-projective resolutions, and explains
their features:
Proposition 3.1.10 ([Kel06, Proposition 3.1]). Any dg-module F admits a h-projective
resolution, that is, a quasi-isomorphism

qF : Q(F ) ≈−→ F, (3.1.5)

natural in F ∈ K(A), where Q(F ) is h-projective. Moreover, Q yields a fully faithful left
adjoint Q : D(A) → K(A) to the localisation functor δ : K(A) → D(A). The adjunction
is obtained as follows:

K(A)(Q(M), N) δ−→ D(A)(Q(M), N) (δ(qM )−1)∗−−−−−−−→ D(A)(M,N). (3.1.6)

Lemma 3.1.11. h-proj(A) is a strongly pretriangulated full dg-subcategory of the dg-
category Cdg(A).
Proof. It is sufficient to show that, if P ∈ h-proj(A), then P [i] ∈ h-proj(A) for all i ∈ Z,
and that C(f) ∈ h-proj(A) whenever f : P → P ′ is a closed degree 0 morphism between
h-projective modules. Let M ∈ Ac(A). Then:

K(A)(P [i],M) ∼= K(A)(P,M [−i]) ∼= 0,

because M [−i] ∈ Ac(A), so P [i] ∈ h-proj(A). Moreover, since K(A) is a triangulated
category, there is an exact sequence:

· · · → K(A)(P [1],M)→ K(A)(C(f),M)→ K(A)(P ′,M)→ K(A)(P,M)→ · · · .

So, since K(A)(P,M) and K(A)(P ′,M) are zero, the same is true for K(A)(C(f),M).
This tells us that C(f) ∈ h-proj(A).

Corollary 3.1.12. h-proj(A) is an enhancement of the derived category D(A). More
precisely, the functor

H0(h-proj(A)) ↪→ K(A) δ−→ D(A) (3.1.7)
is an equivalence.

The above discussion can be dualised. In fact, morphisms F → G in D(A) can also
be represented as “coroofs”:

F
≈−→ R(F )← G,

where F → R(F ) is a h-injective resolution. The results discussed above have their
obvious counterparts. For the reader’s convenience, we state the definition of h-injective
dg-module and the analogue of Proposition 3.1.10:
Definition 3.1.13. Let A be a dg-category, and let F ∈ Cdg(A). F is h-injective if, for
all N ∈ Ac(A), the complex Cdg(A)(N,F ) is acyclic. This equivalent to requiring that

H0(Cdg(A))(N,F ) = K(A)(N,F ) ∼= 0

for all N ∈ Ac(A). The full dg-subcategory of Cdg(A) of h-injective dg-modules is
denoted by h-inj(A).
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Proposition 3.1.14 ([Kel06, Proposition 3.1]). Every dg-module F admits a h-injective
resolution, that is, a quasi-isomorphism

rF : F ≈−→ R(F ), (3.1.8)

natural in F ∈ K(A), where R(F ) is h-injective. Moreover, Q yields a fully faithful right
adjoint R : D(A) → K(A) to the localisation functor δ : K(A) → D(A). The adjunction
is obtained as follows:

D(A)(M,N) δ(rN )∗−−−−→ D(A)(M,R(N)) δ−1
−−→ K(A)(M,R(N)). (3.1.9)

Remark 3.1.15. If M is an h-projective dg-module, then we may assume without loss
of generality that Q(M) = M . Analogously, if N is an h-injective dg-module, we may
assume that R(M) = M .

Moreover, notice that h-projectives (and their resolutions) can be defined also in
the opposite category K(A)op: they coincide with h-injectives (and their resolutions) in
K(A), and vice-versa.

Derived functors and derived adjunctions

Let A and B be dg-categories, and let F : K(A) → K(B) be an exact functor (in most
situation, it is induced by a dg-functor). A typical question is the following: does F
induce an exact functor F ′ : D(A)→ D(B) such that the diagram

K(A) F //

δA
��

K(B)

δB
��

D(A) F ′ // D(B)

is commutative? The answer is positive if F preserves acyclic A-modules (or, equiva-
lently, quasi-isomorphisms). In this case, the induced functor F ′ is often identified with
F itself.

In many situations, however, our given functor F : K(A) → K(B) does not preserve
acyclics; nevertheless, it always does when restricted to h-projective (or h-injective) dg-
modules:

Lemma 3.1.16. Let F : K(A)→ K(B) be an exact functor. Then, F maps dg-modules
which are both acyclic and h-projective (resp. acyclic and h-injective) to acyclics, or
equivalently it preserves quasi-isomorphisms between h-projective (resp. h-injective) dg-
modules.

Proof. Cones of morphisms between h-projective or h-injective dg-modules are easily
seen to be themselves h-projective or h-injective. So, recalling that quasi-isomorphisms
are precisely the morphisms whose cone is acyclic, it is clear that F preserves quasi-
isomorphisms between h-projectives (resp. h-injectives) if and only if it maps dg-modules
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which are both acyclic and h-projective (resp. acyclic and h-injective) to acyclics. Now,
let M ∈ K(A) be h-projective and acyclic (or h-injective and acyclic). By h-projectivity
(or h-injectivity) any quasi-isomorphismM → 0 is actually a homotopy equivalence. So,
F (M) ≈ F (0) = 0 in K(B), in particular it is acyclic.

Now, even if our functor F : K(A)→ K(B) does not pass to the derived categories, it
induces the so-called derived functors. Abstractly, they are defined as Kan extensions1:

Definition 3.1.17. Let F : K(A) → K(B) be a functor. A (total) left derived functor
LF of F is a right Kan extension of δB ◦ F along δA:

K(A)

⇑δA
��

F // K(B)

δB
��

D(A)
LF
// D(B).

Dually, a (total) right derived functor RF of F is a left Kan extension of δB ◦ F along
δA.

Clearly derived functors, being Kan extensions, are uniquely determined up to iso-
morphism. The above Lemma 3.1.16 ensures that derived functors actually exist in our
framework, and the following proposition gives their concrete definitions, which is what
we will actually use. Its proof can be found in [Rie14, Theorem 2.2.8], in a more general
setting.

Proposition 3.1.18. Let A and B be dg-categories, and let F : K(A) → K(B) be an
exact functor. We know that F preserves quasi-isomorphisms between h-projectives; then,
F admits a left derived functor, obtained as follows:

LF : D(A)→ D(B),
LF = δB ◦ F ◦QA

(3.1.10)

where QA : D(A)→ K(A) is the h-projective resolution functor of A.
Dually, we know that F preserves quasi-isomorphisms between h-injectives; then, F

admits a right derived functor, obtained as follows:

RF : D(A)→ D(B),
RF = δB ◦ F ◦RA,

(3.1.11)

where RA : D(A)→ K(A) is the h-injective resolution functor of A.

Remark 3.1.19. We have observed that, if the functor F : K(A) → K(B) preserves
acyclics, then it directly induces a functor F : D(A) → D(B) between the derived cate-
gories. In this case, we don’t need to derive F , indeed we immediately see that

F ∼= LF ∼= RF : D(A)→ D(B).
1Here, we mean Kan extensions of ordinary (k-linear) functors: they are defined in a formally identical

way as Kan extensions of dg-functors.
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We will often encounter adjunctions between categories of dg-modules. As expected,
just as functors can be derived, the same is true for adjunctions:

Proposition 3.1.20. Let A and B be dg-categories, and let

F a G : K(A)� K(B)

be an adjunction of exact functors. Then, there is a derived adjunction

LF a RG : D(A)� D(B), (3.1.12)

which is obtained composing the three adjunctions QA a δA, F a G and δB a RB.
Namely:

D(B)(LF (M), N) = D(B)(δBFQA(M), N)
∼= K(B)(FQA(M), RB(N))
∼= K(A)(QA(M), GRB(N))
∼= D(A)(M, δAGRB(N))
= D(A)(M,RG(N)).

(3.1.13)

We conclude the discussion showing a typical example of derived adjunction. Let
F : A → B. We know that the restriction functor ResF : Cdg(B) → Cdg(A) has a left
adjoint:

IndF a ResF : Cdg(A)� Cdg(B).

If M ∈ Cdg(B) is acyclic, then its restriction ResF (M) is acyclic. So, ResF induces an
exact functor between the derived categories, which we also call ResF :

ResF : D(B)→ D(A).

The functor IndF can be derived, yielding

L IndF : D(A)→ D(B). (3.1.14)

The restriction functor doesn’t need to be derived, so we directly obtain the adjunction

L IndF a ResF .

As a final remark, we point out that L IndF preserves representable modules, just as
IndF (Proposition 2.2.12). In fact, since any representable hA is h-projective (we will
prove this in the beginning of the next section), we may assume Q(hA) = hA, so that in
the end we have:

L IndF (hA)
qis
≈ hF (A).
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3.2 The derived Yoneda embedding
Let A be a dg-category, and let A ∈ A. Then, the right A-module hA is h-projective.
Indeed, let N ∈ Ac(A) be an acyclic module. Then, by Yoneda lemma:

K(A)(hA, N) ∼= H0(NA) ∼= 0.

So, we see that the Yoneda embedding hA factors through h-proj(A), yielding

hA : A→ h-proj(A). (3.2.1)

Taking H0 and composing with the equivalence H0(h-proj(A)) ∼−→ D(A) of Corollary
3.1.12, we obtain the so-called derived Yoneda embedding:

H0(A) ↪→ D(A). (3.2.2)

By definition, the essential image of this functor is the category qrep(A) of quasi-
representable right A-modules. Moreover, the derived Yoneda embedding allows us
to define “triangulated envelopes” of A. The following definition follows Keller’s termi-
nology (see [Kel06]):

Definition 3.2.1. Let A be a dg-category. The triangulated category associated to
A is the smallest strictly full2 triangulated subcategory of D(A) which contains the
essential image of (3.2.2), and it is denoted by tria(A). Moreover, the category of perfect
objects per(A) is the smallest strictly full thick3 triangulated subcategory of D(A) which
contains the essential image of (3.2.2).

Remark 3.2.2. The triangulated category per(A) is idempotent complete, that is, every
map e : X → X such that e2 = e splits, namely, e = gf for suitable morphisms f and
g such that fg = 1. Moreover, it can be shown that it is the idempotent completion of
tria(A).

Both tria(A) and per(A) have dg-enhancements. First, by Lemma 3.1.11, we have
that pretr(A) ⊆ h-proj(A). Next, consider the functor

H0(pretr(A)) ⊆ H0(h-proj(A)) ∼−→ D(A).

Since pretr(A) is the closure of A under taking shifts and cones (up to dg-isomorphism),
then the above functor restricts to an equivalence

H0(pretr(A)) ∼−→ tria(A), (3.2.3)

so, as expected, pretr(A) is an enhancement of tria(A). Next, let us consider per(A).
Recall that an object C in a triangulated category T is compact if for any set of objects
Ti ∈ T, the natural map ⊕i T(C, Ti) → T(C,⊕i Ti) is an isomorphism. We have the
following:

2A subcategory is called strictly full if it is full and closed under isomorphisms.
3A triangulated subcategory is called thick if it is closed under direct summands.
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Lemma 3.2.3 ([Kel06, Corollary 3.7]). per(A) coincides with the subcategory of compact
objects of D(A).

So, perfect A-modules and compact A-modules coincide. Now, define perdg(A) as
the full dg-subcategory of h-proj(A) of the objects which are compact in the category
H0(h-proj(A)). Then, the fully faithful functor

H0(perdg(A)) ↪→ H0(h-proj(A)) ∼−→ D(A)

has the compact objects of D(A) as essential image. So, it restricts to an equivalence

H0(perdg(A)) ∼−→ per(A), (3.2.4)

which proves that perdg(A) is an enhancement of per(A). Since pretr(A) ⊆ perdg(A),
the Yoneda embedding factors through perdg(A), yielding a dg-functor

A ↪→ perdg(A). (3.2.5)

Recall that a dg-category A is pretriangulated if the restricted Yoneda embedding A ↪→
pretr(A) is a quasi-equivalence. There is a stronger notion, which is actually more useful:

Definition 3.2.4. Let A be a dg-category. We say that A is triangulated, following
Toën, see for instance [Toë11]) if the restricted Yoneda embedding

A ↪→ perdg(A)

is a quasi-equivalence.

Remark 3.2.5. We see immediately that A is pretriangulated if and only if the restricted
derived Yoneda embedding

H0(A) ↪→ tria(A)

is an equivalence; analogously, A is triangulated if and only if the restricted derived
Yoneda embedding

H0(A) ↪→ per(A)

is an equivalence. So, A is pretriangulated if and only if H0(A) is a triangulated sub-
category of D(A), and it is triangulated if and only if it is pretriangulated and it is
closed under direct summands in D(A). It is worth mentioning that, equivalently, A is
triangulated if and only if H0(A) is an idempotent complete triangulated subcategory
of D(A) (this is because per(A) is the idempotent completion of tria(A)). So, if an
idempotent complete triangulated category has an enhancement, this enhancement is
automatically triangulated.

The dg-category perdg(A) will be sometimes called the triangulated hull of A. As we
will see at the end of Section 3.5, it satisfies a universal property at the homotopy level.
It is worth mentioning that perdg(A), as pretr(A), is invariant under quasi-equivalences.
More precisely:
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Proposition 3.2.6 ([BLL04, Lemma 4.14]). Let F : A→ B be a dg-functor. Then, the
induction dg-functor IndF preserves triangulated hulls, yielding:

perdg(F ) : perdg(A)→ perdg(B).

Moreover, if F is a quasi-equivalence, then also perdg(F ) is such.

In many situations of interest, dg-categories are obtained as triangulated hulls of
simpler dg-categories. We are going to make this precise, with the notion of generators.
Recall that a triangulated category T is generated4 by a full subcategory E if T is the
smallest strictly full subcategory of itself which contains E; moreover, T is classically
generated by E if T is the smallest thick triangulated subcategory of itself which contains
E. Clearly, if E generates T, then it classically generates T.

Definition 3.2.7. Let A be a triangulated dg-category, and let E ⊂ A be a full dg-
subcategory. We say that A is generated by E if H0(A) is classically generated by
H0(E).

Remark 3.2.8. The definition of generators of a triangulated dg-category is well behaved.
In fact, by [LO10, Proposition 1.16] (keep Corollary 2.3.17 in mind when applying it),
we see that if E generates A, then A is quasi-equivalent to perdg(E). Conversely, if
A

qe
≈ perdg(E), then clearly A is generated by a full dg-subcategory quasi-equivalent to

E.

3.3 Derived Isbell duality
In this section, we study a duality result between dg-modules (and also bimodules)
which is a vast generalisation of the duality of vector spaces over a field. It is called
Isbell duality, after John Isbell (see [Woo82] for a reference). Our notation here follows
the one found on the nLab5.

Proposition 3.3.1 (Isbell duality). Let A be a dg-category. There is a dg-adjunction

O a Spec: Cdg(A)� Cdg(Aop)op, (3.3.1)

where O and Spec are defined as follows:

O(X)A = Cdg(A)(X,hA),
Spec(M)A = Cdg(Aop)(M,hA).

Proof. We have to prove that there is a natural isomorphism of complexes:

Cdg(Aop)(M,O(X)) ∼= Cdg(A)(X,Spec(M)). (3.3.2)
4We warn the reader for potential confusion of terminology in literature. Some authors (for example,

see [BLL04]) give a different meaning to the word “generated”.
5ncatlab.org/nlab/show/Isbell+duality
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We compute:

Cdg(Aop)(M,O(X)) ∼=
∫
A

Cdg(k)(MA,O(X)A)

=
∫
A

Cdg(k)(MA,Cdg(A)(X,hA))

=
∫
A

Cdg(k)(MA,

∫
A′

Cdg(k)(XA′ , hA
′

A ))

∼=
∫
A

∫
A′

Cdg(k)(MA ⊗XA′ , hA
′

A )

∼=
∫
A′

∫
A

Cdg(k)(XA′ ,Cdg(k)(MA, h
A′
A ))

∼=
∫
A′

Cdg(k)(XA′ ,Cdg(Aop)(M,hA
′))

∼= Cdg(A)(X,Spec(M)).

O and Spec admit derived functors, by Proposition 3.1.18. So, we obtain the left
derived functor

LO : D(A)→ D(Aop)op,

LO(X) = O(Q(X)).
(3.3.3)

Analogously, Spec induces the right derived functor

R Spec: D(Aop)op → D(A),
R Spec(M) = Spec(Q(M)).

(3.3.4)

Notice that we employed the h-projective resolution even for R Spec, because of con-
travariance. By Proposition 3.1.20, we get the derived adjunction

LO a R Spec: D(A)→ D(Aop)op, (3.3.5)

which we call derived Isbell duality.
An object X ∈ Cdg(A) is called Isbell autodual if the unit X → Spec(O(X)) is an

isomorphism. If X = hA is represented by A ∈ A, then

O(X) = O(hA)
= Cdg(A)(hA, h−)
∼= A(A,−) = hA,

and analogously

Spec(hA) = Cdg(Aop)(hA, h−)
∼= A(−, A) = hA.
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In the end, we have isomorphisms

hA ∼= SpecO(hA),
hA ∼= O(Spec(hA)),

natural in A ∈ A. By Proposition 1.2.14, we deduce that A-dg-modules of the form hA
are Isbell autodual, and also, more precisely:

Lemma 3.3.2. The dg-adjunction O a Spec restricts to an adjoint dg-equivalence

rep(A)� rep(Aop)op,

where rep(A) denotes the dg-category of representable right A-modules.
Analogously, the induced adjunction H0(O) a H0(Spec) restricts to an adjoint equiv-

alence
hrep(A)� hrep(Aop)op,

where hrep(A) denotes the full subcategory of K(A) of A-modules X such that X ≈ hA
for some A ∈ A.

With a little more work, we are able to establish a similar result for the derived
adjunction LO a R Spec:

Proposition 3.3.3. The adjunction LO a R Spec restricts to an adjoint equivalence

qrep(A)� qrep(Aop)op,

where qrep(A) is the full subcategory of D(A) of quasi-representable A-modules: X ∈
qrep(A) if and only if X is quasi-isomorphic to hA for some A ∈ A.

Proof. Let A ∈ A. Then:

LO(hA) = O(Q(hA))
= Cdg(A)(Q(hA), h−)
qis
≈ Cdg(A)(hA, h−)
∼= hA,

and analogously R Spec(hA)
qis
≈ hA. The quasi-isomorphism Cdg(A)(Q(hA), h−)

qis
≈

Cdg(A)(hA, h−) induced by q : Q(hA) → hA comes from the fact that both Q(hA) and
hA are h-projective; it is actually a homotopy equivalence. Since q is natural in K(A), we
deduce that LO(hA)

qis
≈ hA and R Spec(hA)

qis
≈ hA are natural in A ∈ H0(A) ↪→ D(A).

So, we have natural isomorphisms

hA
qis
≈ R Spec(LO(hA)),

hA
qis
≈ LO(R Spec(hA)),

and since qrep(A) is the isomorphism closure of the image ofH0(A) in D(A), we conclude
with the desired claim.
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Duality for bimodules

(Derived) Isbell duality extends to bimodules. First, let us introduce some notation:

Cdg(A,B) = Cdg(B⊗Aop),
K(A,B) = K(B⊗Aop),
D(A,B) = D(B⊗L Aop),

h-proj(A,B) = h-proj(B⊗L Aop).

These definitions are justified by the observation that a dg-bimodule F ∈ Cdg(A,B)
(covariant in A, contravariant in B) can be seen as a dg-functor F : A→ Cdg(B). Also,
remember that by Corollary 3.1.12 the dg-category h-proj(A,B) is an enhancement of
D(A,B).

Isbell duality generalises quite directly to the following:

Proposition 3.3.4. Let A,B be dg-categories. There is a dg-adjunction

L a R : Cdg(A,B)� Cdg(B,A)op, (3.3.6)

where L and R are defined by

L(T )AB = O(TA)B = Cdg(B)(TA, hB),
R(S)BA = Spec(SA)B = Cdg(Bop)(SA, hB).

(3.3.7)

Proof. We have to prove that there is a natural isomorphism of complexes:

Cdg(B,A)(S,L(T )) ∼= Cdg(A,B)(T,R(S)). (3.3.8)

We compute:

Cdg(B,A)(S,L(T )) ∼=
∫
A

Cdg(Bop)(SA,O(TA))

∼=
∫
A

Cdg(Bop)(TA,Spec(SA))
∼= Cdg(A,B)(T,R(S)),

where the second isomorphism of the chain follows from the Isbell duality isomorphism
(3.3.2) of B.

By Proposition 3.1.18, L and R can be derived, and in the end we obtain the derived
adjunction:

LL a RR : D(A,B)� D(B,A)op,

LL(T ) = L(Q(T )),
RR(S) = R(Q(S)).

(3.3.9)
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The above definitions employ h-projective resolutions of bimodules. A bimodule
T ∈ Cdg(A,B) induces right B-modules TA and left A-modules TB, for all A ∈ A and
B ∈ B. A very useful result is that an h-projective resolution of T induces componentwise
h-projective resolutions of TA and TB (for all A and all B), as explained in the following
lemma:

Lemma 3.3.5 (see [CS15, Lemma 3.4]). Let A,B be h-projective dg-categories. Let T ∈
Cdg(A,B) be an h-projective bimodule. Then, for all A ∈ A, TA ∈ Cdg(B) is h-projective.
Analogously, for all B ∈ B, TB ∈ Cdg(Aop) is h-projective. In particular, if q : Q(T )→
T is an h-projective resolution of T , then qA : Q(T )A → TA and qB : Q(T )B → TB are
h-projective resolutions respectively of TA and TB, for all A ∈ A and B ∈ B. Without
loss of generality, we may set Q(T )A = Q(TA) and Q(T )B = Q(TB).

The adjunction L a R and its derived version LL a RR are strictly related to the
(derived) Isbell duality adjunction. indeed, we have the following:

Lemma 3.3.6. Let A,B be dg-categories. Let T ∈ Cdg(A,B) and S ∈ Cdg(B,A). Let
η : T → RL(T ) and ε : S → LR(S)6 be the unit and counit morphisms of the adjunction
L ` R, calculated in T and S. Then, for all A ∈ A, the morphisms ηA : TA → RL(T )A
and εA : SA → LR(S)A are the unit and counit maps of the Isbell duality of B, calculated
in TA and SA.

Proof. We rewrite the adjunction L a R as follows:∫
A

Cdg(Bop)(SA, L(T )A) ∼−→
∫
A

Cdg(B)(TA, R(S)A).

By definition, L(T )A = O(TA), R(S)A = Spec(SA), and there is a commutative diagram
for all A ∈ A: ∫

A
Cdg(Bop)(SA, L(T )A) ∼ //

��

∫
A

Cdg(B)(TA, R(S)A)

��

Cdg(Bop)(SA, L(T )A) ∼ // Cdg(B)(TA, R(S)A).

The vertical arrows are the natural maps associated to the written ends; the “downstairs”
isomorphism is precisely the Isbell duality adjunction of B, and our claim immediately
follows.

The above result immediately extends to the homotopy level adjunction H0(L) a
H0(R), and also to the derived adjunction LL a RR:

6We view the counit as a map in Cdg(B, A): this explains the seemingly “wrong direction” of the
arrow.
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Corollary 3.3.7. Let A,B be dg-categories, and let T ∈ D(A,B), S ∈ D(B,A). Let
η̃ : T → RR(LL(T )) and ε̃ : S → LL(RR(S)) be the unit and counit morphisms of the
derived adjunction LL a RR, calculated in T and S. Then, for all A ∈ A, the morphisms
η̃A : TA → RR(LL(T ))A and ε̃A : SA → LL(RR(S))A are the unit and counit morphisms
of the derived Isbell duality of B, calculated in TA and SA.

Proof. For simplicity, assume that A and B are h-projective, identifying them with their
h-projective resolutions. Let A ∈ A. There is an obvious dg-functor

(−)A : Cdg(A,B)→ Cdg(B),
T 7→ TA.

This dg-functor clearly preserves acyclic modules, hence it induces a functor

(−)A : D(A,B)→ D(B).

Recall that, by Lemma 3.3.5, if q : Q(T ) → T is an h-projective resolution of T , then
qA : Q(T )A = Q(TA) → TA is an h-projective resolution of TA. The functor Q is left
adjoint to the localisation functor; recalling how this adjunction is obtained (formula
(3.1.6)), we see that the diagram

K(A,B)(Q(T ), T ′) ∼ //

(−)A
��

D(A,B)(T, T ′)

(−)A
��

K(B)(Q(TA), T ′A) ∼ // D(B)(TA, T ′A).

is commutative. This, combined with the above lemma and with the definition of the
adjunction LL a RR as a composition of adjunctions (Proposition 3.1.20), gives us the
claim regarding the unit η̃. A similar argument gives the other part of the statement.

Now, let T ∈ Cdg(A,B) be a right representable bimodule, that is, for all A ∈ A,
TA ∼= hF (A) for some F (A) ∈ B. Then, we have that

L(T )A = O(TA)
∼= O(hF (A))
∼= hF (A).

So, L(T ) is left representable. Analogously, if S ∈ Cdg(B,A) is left representable, that is,
SA ∼= hG(A) for all A ∈ A, then R(S) is right representable, and in particular R(S)A ∼=
hG(A) for all A. So, the duality L a R sends right representables to left representables,
and vice-versa. A similar observation can be done at the homotopy level: call a bimodule
T ∈ Cdg(A,B) right homotopy representable if TA ≈ hF (A) for some F (A) ∈ B, for alla
A ∈ A. Then, a similar computation as above shows that L(T )A ≈ hF (A), so that L(T ) is
left homotopy representable. Vice-versa, if S ∈ Cdg(B,A) is left homotopy representable,
then R(S) is right homotopy representable. More precisely, we have the following:
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Lemma 3.3.8. Let A,B be dg-categories. The dg-adjunction L a R restricts to an
adjoint dg-equivalence

repr(A,B)� repl(B,A)op
,

where repr(A,B) is the full dg-subcategory of right representable bimodules in Cdg(A,B),
and repl(B,A) is the full dg-subcategory of left representable bimodules in Cdg(B,A).

Analogously, the homotopy adjunction H0(L) a H0(R) restricts to an adjoint equiv-
alence

hrepr(A,B)� hrepl(B,A)op
,

where hrepr(A,B) and hrepl(B,A) denote respectively the full subcategories of K(A,B)
and K(B,A) of right (or left) homotopy representable bimodules.

Proof. This is a direct application of Lemma 3.3.6. For instance, to show that the unit
η : T → RL(T ) is an isomorphism when T ∈ repr(A,B), or a homotopy equivalence
when T ∈ hrepr(A,B), it is sufficient to show that the components ηA : TA → RL(T )A
are such for all A ∈ A. But by hypothesis TA ∈ rep(B) (or hrep(B) in the case of
homotopy right representability), so by Lemma 3.3.2 we are done.

A similar result as above holds for the derived duality LL a RR. Call a bimodule
T ∈ Cdg(A,B) right quasi-representable if TA

qis
≈ hF (A) for some F (A) ∈ B, for all A ∈ A;

analogously, a bimodule S ∈ Cdg(B,A) is called left quasi-representable if SA
qis
≈ hG(A)

for some G(A) ∈ B, for all A ∈ A. We have the following:

Proposition 3.3.9. Let A,B be dg-categories. The derived adjunction LL a RR re-
stricts to an adjoint equivalence

qrepr(A,B)� qrepl(B,A)op
,

where qrepr(A,B) is the full subcategory of D(A,B) of right quasi-representable bi-
modules, and qrepl(B,A) is the full subcategory of D(B,A) of left quasi-representable
bimodules.

Proof. This is an application of Corollary 3.3.7. For instance, to show that the unit
η̃ : T → RR(LL(T )) is an isomorphism in D(A,B), it is sufficient to show that η̃A is
an isomorphism in D(B) for all A. This follows directly by Proposition 3.3.3, since by
hypothesis TA ∈ qrep(B) for all A ∈ A.
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3.4 The bicategory of bimodules; adjoints
An interesting feature of bimodules is that they can be viewed as “generalised functors”.
We will sometimes write F : A B meaning F ∈ Cdg(A,B). Given bimodules F : A 
B and G : B C, we can define their composition G � F : A C, as follows:

(G � F )CA =
∫ B

FBA ⊗GCB. (3.4.1)

Applying the dg-functoriality of coends, we find out that � is dg-functorial in both
variables, hence giving rise to dg-bifunctors

− � − : Cdg(B,C)⊗ Cdg(A,B)→ Cdg(A,C). (3.4.2)

In particular, if ϕ : F → F ′ and ψ : G → G′ are dg-natural transformations, we have
dg-natural transformations ψ � F : G � F → G′ � F and G � ϕ : G � F → G � F ′.

By co-Yoneda lemma, the diagonal bimodules act as (weak) units for this composi-
tion:

F � hA =
∫ A

hA ⊗ FA ∼= F,

hB � F =
∫ B

FB ⊗ hB ∼= F,

(3.4.3)

given F : A  B. Moreover, the composition is weakly associative. indeed, given
F : A→ B, G : B→ C, H : C→ D, we have:

H � (G � F ) =
∫ C

(G � F )C ⊗HC

=
∫ C

(∫ B

FB ⊗GCB

)
⊗HC

∼=
∫ B ∫ C

FB ⊗ (GCB ⊗HC)

∼=
∫ B

FB ⊗
(∫ C

GCB ⊗HC

)

=
∫ B

FB ⊗ (H �G)B

= (H �G) � F,

where we used Fubini’s theorem and the cocontinuity of the tensor product.
Another interesting property of the composition � is that it preserves h-projective

bimodules:

Lemma 3.4.1. Let A,B,C be h-projective dg-categories. Let F : A B and G : B C
be h-projective bimodules. Then, G � F is h-projective.
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Proof. Let N ∈ Cdg(A,C) be acyclic. We compute:

Cdg(A,C)(G � F,N) =
∫
A,C

Cdg(k)((G � F )CA, NC
A )

=
∫
A,C

Cdg(k)
(∫ B

FBA ⊗GCB, NC
A

)
∼=
∫
A,B,C

Cdg(k)(FBA ⊗GCB, NC
A )

∼=
∫
A,B,C

Cdg(k)(FBA ,Cdg(k)(GCB, NC
A ))

∼=
∫
A,B

Cdg(k)(FBA ,Cdg(C)(GB, NA)

∼= Cdg(A,B)(F,Cdg(C)(G−, N−)).

Now, (A,B) 7→ Cdg(C)(GB, NA) is acyclic, indeed:

H i(Cdg(C)(GB, NA)) = H0(Cdg(C)(GB, NA[i])
= K(C)(GB, NA[i]),

and GB is h-projective by Lemma 3.3.5, so K(C)(GB, NA[i]) ∼= 0. Hence, since F is
h-projective, Cdg(A,B)(F,Cdg(C)(G−, N−)) is acyclic, and we are done.

There is a derived version of the composition �. Namely, given F ∈ D(A,B) and
G ∈ D(B,C), we set

G �L F = Q(G) �Q(F )
qis
≈ G �Q(F )

qis
≈ Q(F ) �G (3.4.4)

taking h-projective resolutions of either F or G. The composition �L is defined up to
quasi-isomorphism, and it is functorial, as we can expect, in the sense that it gives
bifunctors

− �L − : D(B,C)⊗ D(A,B)→ D(A,C). (3.4.5)
By the above Lemma 3.4.1, Q(G)�Q(F ) is always h-projective, so we may prove directly
that �L is weakly associative and unital. indeed:

H �L (G �L F ) = Q(H) � (G �L F )
= Q(H) � (Q(G) �Q(F ))
∼= (Q(H) �Q(G)) �Q(F )
= (H �L G) �Q(F )
= (H �L G) �L F,

and

F �L hA = Q(F ) � hA ∼= Q(F )
qis
≈ F,

hB �L F = hB �Q(F ) ∼= Q(F )
qis
≈ F.



3.4. THE BICATEGORY OF BIMODULES; ADJOINTS 59

The composition � and its derived version �L are indeed part of bicategorical structures.
Namely, we have the (dg-)bicategory Bimod whose objects are dg-categories, with 1-
morphisms and 2-morphisms respectively given by the objects and the morphisms of the
dg-categories Cdg(A,B); in the derived setting, we have the bicategory DBimod whose
objects are dg-categories, with 1-morphisms and 2-morphisms given respectively by the
objects and the morphisms of the categories D(A,B). We won’t study these structures in
full detail; however, it is interesting to explore the notion of adjointness and its relation
to (quasi)-representability.
Definition 3.4.2. Let F : A  B and G : B  A be 1-morphisms in Bimod. We
say that F a G (F is left adjoint to G) if there exist (closed, degree 0) 2-morphisms
η : hA → G � F and ε : F � G → hB such that the following triangular identities are
satisfied:

(F ∼= F � hA
F�η−−→ F � (G � F ) ∼= (F �G) � F ε�F−−→ hB � F ∼= F ) = 1F ,

(G ∼= hA �G
η�G−−→ (G � F ) �G ∼= G � (F �G) G�ε−−→ G � hB ∼= G) = 1G.

The definition of adjoint 1-morphisms in DBimod is analogous (replace � with the
derived composition �L).

Given T ∈ Cdg(A,B), we could expect that its dual L(T ) (or R(T )) were adjoint to T .
This is not true in general, but it is provable under the right (or the left) representability
assumption. First, notice that there is a (closed, degree 0) morphism in Cdg(A,A), dg-
natural in T :

n : L(T ) � T → Cdg(B)(T−, T−). (3.4.6)
Indeed, write:

(L(T ) � T )AA′ =
∫ B

TBA′ ⊗ L(T )AB

=
∫ B

TBA′ ⊗ Cdg(B)(TA, hB)

∼=
∫ B

Cdg(B)(hB, TA′)⊗ Cdg(B)(TA, hB).

It is directly checked that the diagram

Cdg(B)(hB′ , TA′)⊗ Cdg(B)(TA, hB) //

��

Cdg(B)(hB, TA′)⊗ Cdg(B)(TA, hB)

��

Cdg(B)(hB′ , TA′)⊗ Cdg(B)(TA, hB′) // Cdg(B)(TA, TA′)

is commutative for all B → B′ in B, where the arrows arriving in Cdg(B)(TA, TA′) are
given by composition, and they are natural in A,A′. Hence, by the universal property
of the coend, we find our desired map. There are also (closed, degree 0) maps

e : T � Cdg(B)(T−, T−)→ T, (3.4.7)
e′ : Cdg(B)(T−, T−) � L(T )→ L(T ). (3.4.8)
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The morphism (3.4.7) is induced by the maps

Cdg(B)(TA, TA′)⊗ TBA → TBA′ ,

ϕ⊗ x 7→ ϕB(x),

natural in A′ and B. Moreover, (3.4.8) is induced by the composition maps

Cdg(B)(TA, hB)⊗ Cdg(B)(TA′ , TA)→ Cdg(B)(TA′ , hB),

natural in A′ and B. In a similar fashion as for (3.4.7), we get a candidate counit
morphism:

ε : T � L(T )→ hB. (3.4.9)

indeed, this morphism is induced by the maps:

Cdg(B)(TA, hB′)⊗ TBA → hBB′ ,

ϕ⊗ x 7→ ϕB(x),

natural in B and B′. Also, we have the morphism

t : hA → Cdg(B)(T−, T−),

induced by the action of T on morphisms of A. The following result tells us that the
adjunction T a L(T ) is not very far from being obtained.

Lemma 3.4.3. The diagram

T
∼ // T � hA

T�t // T � Cdg(B)(T−, T−) e // T

T � (L(T ) � T )

T�n
55

∼ // (T � L(T )) � T ε�T // hB � T

∼

OO

(3.4.10)

is commutative, and the top row composition is the identity 1T .
Analogously, the diagram

L(T ) ∼ // hA � L(T ) t�L(T )
// Cdg(B)(T−, T−) � L(T ) e′ // L(T )

(L(T ) � T ) � L(T )

n�L(T )
44

∼ // L(T ) � (T � L(T )) L(T )�ε
// L(T ) � hB

∼
OO

(3.4.11)

is commutative, and the top row composition is the identity 1L(T ).

Proof. They are all direct computations, which we leave to the reader.

Taking h-projective resolutions of T and of LL(T ), and projecting every morphism
in the derived category, we get the derived version of the above lemma:
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Lemma 3.4.4. The diagram

T
∼ // T �L hA

T�Lt // T �L Cdg(B)(Q(T )−, Q(T )−) e // T

T �L (LL(T ) �L T )

T�Ln
44

∼ // (T �L LL(T )) �L T ε�LT // hB �L T

∼

OO

(3.4.12)

is commutative, and the top row composition is the identity 1T .
Analogously, the diagram

LL(T )
qis
≈ hA �L LL(T )t�

LL(T )
// Cdg(B)(Q(T )−, Q(T )−) �L LL(T ) e′ // LL(T )

(LL(T ) �L T ) �L LL(T )

n�LLL(T )
33

∼ // LL(T ) �L (T �L LL(T )) LL(T )�Lε
// LL(T ) �L hB

∼

OO

(3.4.13)
is commutative, and the top row composition is the identity 1LL(T ).

Proof. It follows immediately from Lemma 3.4.3. Remember to compose with the h-
projective resolutions T

qis
≈ Q(T ) and LL(T )

qis
≈ Q(LL(T )), at the start and the end of

the top rows of both diagrams.

Now, we see that the obstruction for L(T ) to be adjoint to T lies in the morphism
(3.4.6) (or its derived version). For instance, if it is a natural isomorphism, then we may
define the unit morphism

η = n−1t : hA → L(T ) � T,

and Lemma 3.4.3 tells us immediately that T a L(T ). Analogously, if the derived
morphism n : LL(T ) �L T → Cdg(B)(Q(T )−, Q(T )−) is a quasi-isomorphism, then we
have a unit morphism η in the derived category, and Lemma 3.4.4 tells us that T a
LL(T ). A sufficient condition for n to be (in some sense) invertible is actually the right
(quasi-)representability of T :

Proposition 3.4.5. If T ∈ Cdg(A,B) is right representable, then (3.4.6) is an isomor-
phism. If it is right homotopy representable, then it is a homotopy equivalence.

If T ∈ D(A,B) is right quasi-representable, then (3.4.6) induces a quasi-isomorphism
(that is, the derived map

n : LL(T ) �L T → Cdg(B)(Q(T )−, Q(T )−)

is a quasi-isomorphism).
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Proof. Assume that TA ∼= hF (A) or TA ≈ hF (A) for all A ∈ A. Then, we have a
commutative diagram:

∫ B

TBA′ ⊗ Cdg(B)(TA, hB) n //

≈
��

Cdg(B)(TA, TA′)

≈

��∫ B

hBF (A′) ⊗ Cdg(B)(hF (A), hB)

∼
��

Cdg(B)(hF (A), hF (A′))

∼

��∫ B

hBF (A′) ⊗ h
F (A)
B

∼ // h
F (A)
F (A′).

The lower vertical arrows, labeled with ∼, are given by the Yoneda lemma; the lower
horizontal arrow is the co-Yoneda isomorphism. By dg-functoriality, the upper vertical
arrows, labeled with ≈, are isomorphisms if T is right representable, homotopy equiva-
lences if T is homotopy right representable. So, in the first case, n is an isomorphism,
and in the other case n is a homotopy equivalence.

In the derived setting, just replace T with its h-projective resolution Q(T ). Then,
since Q(T )A and hF (A) are h-projective for all A, the quasi-isomorphism Q(T )A

qis
≈ hF (A)

is actually given by a homotopy equivalence; we apply the above argument and conclude
that n is a quasi-isomorphism, when viewed in the derived category.

Corollary 3.4.6. If T ∈ Cdg(A,B) is right representable, then there is an adjunction
T a L(T ) in Bimod. If T ∈ D(A,B) is right quasi-representable, then there is an
adjunction T a LL(T ) in DBimod.

Moreover, if S ∈ Cdg(B,A) is left representable, then there is an adjunction R(S) a
S in Bimod. If S ∈ D(B,A) is left quasi-representable, then there is an adjunction
RR(S) a S in DBimod.

Proof. The first part of the assertion follows directly from Proposition 3.4.5 and the
above discussion. The second part is a consequence of Lemma 3.3.2 and Proposition
3.3.3. Indeed, if S is left representable, then R(S) is right representable, so we have
R(S) a LR(S), but LR(S) ∼= S, and we are done. A similar argument in the derived
setting shows that RR(S) a S.

3.5 Quasi-functors

Let T ∈ Cdg(A,B) be a right representable bimodule, and assume TA ∼= hF (A) for all
A ∈ A. Then, there is a (unique) way to define a dg-functor F : A → B such that the



3.5. QUASI-FUNCTORS 63

above isomorphisms are natural in A:

TA
∼ //

Tf

��

hF (A)

hF (f)
��

TA′
∼ // hF (A′).

However, if T ∈ D(A,B) is right quasi-representable, TA
qis
≈ hF (A), then the above

technique fails. Indeed, for all f : A→ A′ in A, consider the following diagram:

TA

qis
≈ //

Tf

��

hF (A)

��

TA′
qis
≈ // hF (A′)

For simplicity, assume that TA is h-projective for all A, so that the above horizontal
quasi-isomorphisms are actually homotopy equivalences. Then, we are led to define
hF (f) : hF (A) → hF (A′) by choosing a weak inverse of TA ≈ hF (A) and composing with
Tf and a representative of TA′ ≈ hF (A′). This gives us an arrow F (f) : F (A) → F (A′),
but this arrow is not uniquely determined (it is just “unique up to homotopy”), so we
are unable to obtain a dg-functor from this, even if we could in fact show that our
attempt to define F gives a “weak (homotopy coherent) dg-functor”. In fact, right
quasi-representable bimodules are themselves higher categorical gadgets: they are called
quasi-functors.

The category of quasi-functors from A to B, which we called qrepr(A,B), is usu-
ally denoted by rep(A,B) in literature (see, for instance, [Kel06]). In order to avoid
confusion, we will stick to our (non standard) notation. Often, we will allow ourselves
to write T : A → B to mean that T is a quasi-functor from A to B. The composition
�L descends to quasi-functors, namely, if T ∈ qrepr(A,B) and S ∈ qrepr(B,C), then
S �L T ∈ qrepr(A,C). Indeed, assume that TA

qis
≈ hF (A) and SB

qis
≈ hG(B) for all A ∈ A

and B ∈ B. Then:

(S �L T )A =
∫ B

Q(T )BA ⊗Q(S)B ≈
∫ B

hBF (A) ⊗ hG(B) ∼= hG(F (A)), (3.5.1)

where the last isomorphism follows by co-Yoneda lemma. It is also worth remarking that
any dg-functor F : A→ B can be identified with a quasi-functor, namely, the bimodule
hF . Moreover, notice that the composition of F with a quasi-functor (actually, any
bimodule) G : B→ C yields the following:

(G �L F )A =
∫ B

hBF (A) ⊗Q(G)B
∼= Q(G)F (A)
qis
≈ GF (A),

(3.5.2)
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dg-functorially in A, for F is a dg-functor. Clearly, the above computation gives a
similar result also for the (underived) composition �. Now, corollary 3.1.12 immediately
specialises to the following:
Corollary 3.5.1. The full dg-subcategory h-projrqr(A,B) ⊂ h-proj(A,B) of h-projective
right quasi-representable bimodules is an enhancement of qrepr(A,B). More precisely,
the equivalence

H0(h-projrqr(A,B)) ∼−→ qrepr(A,B)
is obtained from (3.1.7) by restriction.

The dg-category h-projrqr(A,B) can be thought as the dg-category of quasi-functors
from A to B. By the above computation (3.5.1) and by Lemma 3.4.1, we see that the
composition � preserves h-projective right quasi-representable bimodules, and in fact it
gives dg-bifunctors

− � − : h-projrqr(B,C)⊗ h-projrqr(A,B)→ h-projrqr(A,C). (3.5.3)

The relevance of h-projrqr(A,B) lies in the fact that it is an incarnation of the internal
hom RHom(−,−) of the monoidal category Hqe:
Theorem 3.5.2 ([Toë07], [CS15]). There is a natural bijection:

Hqe(A⊗L B,C) ∼−→ Hqe(A, h-projrqr(B,C)),

which lifts to a natural quasi-equivalence:

h-projrqr(A⊗L B,C) ∼−→ h-projrqr(A,h-projrqr(B,C)).

From now until the end of this chapter, we identify the dg-category RHom(A,B) to
h-projrqr(A,B), and moreover we identify H0(RHom(A,B)) to the category of quasi-
functors qrepr(A,B). Nevertheless, we mention that we will sometimes employ the term
quasi-functor from A to B to mean an element of H0(RHom(A,B)), regardless of the
chosen “incarnation” of RHom(A,B); moreover, we will often simplify notation and
denote the composition of quasi-functors by ◦ or even juxtaposition. We conclude the
present discussion mentioning the “homotopy universal properties” of the pretriangu-
lated envelope pretr(A) and the triangulated hull per(A).
Proposition 3.5.3 ([Kel06, Paragraph 4.5]). Let A,B be dg-categories, and assume
that B is pretriangulated. Then RHom(A,B) is pretriangulated. Moreover, there is a
natural quasi-equivalence:

RHom(pretr(A),B) ∼−→ RHom(A,B), (3.5.4)

induced by the Yoneda embedding A ↪→ pretr(A).
Proposition 3.5.4 ([Toë07, Theorem 7.2], [CS15, Corollary 4.2]). Let A,B be dg-
categories, and assume that B is triangulated. Then RHom(A,B) is triangulated. More-
over, there is a natural quasi-equivalence:

RHom(perdg(A),B) ∼−→ RHom(A,B), (3.5.5)

induced by the Yoneda embedding A ↪→ perdg(A).
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Adjoints

The results of Section 3.4 allow us to give a simple working characterisation of adjunc-
tions of quasi-functors. Given quasi-functors T : A→ B and S : B→ A, we say that T
is left adjoint to S (and S is right adjoint to T ) simply if T a S as bimodules, that is,
in the bicategory DBimod. Now, since T is a quasi-functor, then we have the adjunction
T a LL(T ), and so S

qis
≈ LL(T ) (adjoints are always unique up to isomorphism). In

particular, S is left quasi-representable, and we have the adjunction RR(S) a S, so we
also deduce that T

qis
≈ RR(S). In conclusion, we get the following result:

Proposition 3.5.5. A quasi-functor T : A → B has a left adjoint if and only if it is
left quasi-representable. Moreover, it has a right adjoint if and only if LL(T ) is right
quasi-representable.

There are sufficient hypotheses on the dg-categories that guarantee the existence of
adjoints. They are, in some sense, particular finiteness conditions:

Definition 3.5.6. Let A be a dg-category. We say that A is locally perfect if A(A,A′)
is a perfect k-module: A(A,A′) ∈ per(k) for all A,A′ ∈ A. We say that A is smooth if
the diagonal bimodule is perfect: hA ∈ per(A⊗L Aop).

Remark 3.5.7. It is worth mentioning that a dg-category A is smooth (resp. locally
perfect) if and only perdg(A) is smooth (resp. locally perfect): see [TV07, Lemma 2.6].

We need a result adapted from [TV07, Lemma 2.8]:

Lemma 3.5.8. Let A,B be dg-categories, and let T ∈ D(A,B) be a bimodule. If A is
locally perfect and T is a perfect bimodule, then TA is a perfect right B-module for all
A ∈ A. Analogously, if B is locally perfect and T is perfect, then TB is a perfect left
A-module for all B ∈ B.

Conversely, if A is smooth and TA is perfect for all A ∈ A, then T is a perfect
bimodule. Analogously, if B is smooth and TB is perfect for all B ∈ B, then T is
perfect.

Now, we are able to prove the existence result of adjoints of quasi-functors:

Theorem 3.5.9. Let A,B be dg-categories. Assume that A is triangulated and smooth,
and that B is locally perfect. Let T : A→ B be a quasi-functor. Then, T admits both a
left and a right adjoint.

Proof. By hypothesis, TA is quasi-representable, in particular perfect, for all A ∈ A.
So, by Lemma 3.5.8, T is a perfect bimodule. Since B is locally perfect, then TB is a
perfect left A-module for all B ∈ B. But A is triangulated, so we conclude that TB
is quasi-representable for all B ∈ B, hence we conclude that T has a left adjoint, by
Proposition 3.5.5.

To prove the existence of the right adjoint, we apply a similar argument to LL(T ).
Since T is right quasi-representable, then LL(T ) is left quasi-representable, that is,
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LL(T )A is quasi-representable, in particular perfect, for all A ∈ A. Since A is smooth,
we have that LL(T ) is a perfect bimodule; since B is locally perfect, we deduce that
LL(T )B is a perfect right A-module for all B ∈ B. Since A is triangulated, LL(T )B
is quasi-representable for all B ∈ B, so in the end LL(T ) is both left and right quasi-
representable, and by Proposition 3.5.5 we conclude that T has a right adjoint.

Remark 3.5.10. The above result is mentioned in [TV15], under stronger assumptions on
the dg-categories, namely, saturatedness: see [TV07, Definition 2.4]. If a dg-category A
is saturated, then in particular it is triangulated andH0(A) is saturated as a triangulated
category ([TV08, Appendix A]), that is, any covariant or contravariant cohomological
functor H0(A) → Mod(k) of finite type is representable. It is an easy exercise to show
that exact functors between saturated (and Ext-finite) triangulated categories admit
adjoints: Theorem 3.5.9 can hence be viewed as an enhancement of this result in the dg
framework.

3.6 The abstract dg-lift problem

As we know, any bimodule T ∈ Cdg(A,B) induces a H0(A)-H0(B)-bimodule, obtained
by taking degree 0 cohomology: H0(T )BA = H0(TBA ). This mapping, analogously to
(3.1.1), is functorial in the following sense:

H0 : K(A,B)→ Mod(H0(A), H0(B)), (3.6.1)

where we set Mod(H0(A), H0(B)) = Mod(H0(B) ⊗H0(A)op), the category of H0(A)-
H0(B)-bimodules. If T ∈ qrepr(A,B) is a quasi-functor (for simplicity, assume that
A and B are identified with their h-projective resolutions), then H0(T )A = H0(TA) ∼=
H0(hF (A)) is the right H0(B)-module represented by F (A); hence, H0(T ) is right rep-
resentable as a H0(A)-H0(B)-bimodule, and in particular it yields a functor H0(A)→
H0(B), which we denote by H0(T ), abusing notation. The mapping T 7→ H0(T ) is
easily seen to be functorial, and in the end we get a functor

ΦA→B : H0(RHom(A,B))→ Fun(H0(A), H0(B)), (3.6.2)

which is actually a revisitation of the H0 functor (3.6.1). En passant, it is worth men-
tioning that this functor preserves adjunctions:

Lemma 3.6.1. An adjunction T a S : A � B of quasi-functors induces an adjunction
of functors H0(T ) a H0(S) : H0(A)� H0(B).

Proof. By hypothesis we have:

H0(T )A ∼= H0(B)(−, F (A)),
H0(S)B ∼= H0(A)(−, G(B)),
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and there is a unique way to define functors F : H0(A) → H0(B) and G : H0(B) →
H0(A) such that the above isomorphisms are natural respectively in A and B. By defi-
nition, H0(T ) is identified with F and H0(S) is identified with G. We know (Proposition
3.5.5) that S

qis
≈ LL(T ). In particular, we find that

H0(S)A ∼= H0(B)(F (A),−),

naturally in A. We conclude that

H0(S) ∼= H0(B)(F (−),−) ∼= H0(A)(−, G(−)),

as required.

The dg-lift uniqueness problem, which will be addressed in the following part of the
work, amounts to understanding in which cases ΦA→B is essentially injective, that is:
given quasi-functors T1, T2 such that H0(T1) ∼= H0(T2), is it true that T1

qis
≈ T2?

Remark 3.6.2. If A and B are pretriangulated, then a quasi-functor T : A → B yields
an exact functor H0(T ) : H0(A) → H0(B). In this case, we will always view ΦA→B as
taking values in Funex(H0(A, H0(B)):

ΦA→B : H0(RHom(A,B))→ Funex(H0(A), H0(B)).

The dg-lift uniquness problem, stated in its generality, is difficult; still, we are able
to obtain a general “duality result”:

Proposition 3.6.3. Let A,B be dg-categories, and assume that every quasi-functor
A→ B admits a left or a right adjoint (for example, assume the hypotheses of Theorem
3.5.9). Then, if ΦB→A is essentially injective, so is ΦA→B.

Proof. Assume F, F ′ : A→ B are quasi-functors such thatH0(F ) ∼= H0(F ′). By hypoth-
esis, F and F ′ have (right or left) adjointsG andG′. By Lemma 3.6.1, H0(G) andH0(G′)
are adjoints of H0(F ) and H0(F ′), so they have to be isomorphic: H0(G) ∼= H0(G′). By
hypothesis, G

qis
≈ G′. So, by the uniqueness of adjoints up to isomorphism, we conclude

that F
qis
≈ F ′, as required.

Also, it is worth to address the trivial case:

Lemma 3.6.4. View k as a dg-category, and let B be a dg-category. Then, Φk→B is an
equivalence.

Proof. We identify H0(RHom(k,B)) to right quasi-representable bimodules k  B,
that is, to the category qrep(B) of quasi-representable right B-modules. Analogously,
we identify Fun(k, H0(B)) to the category H0(B). The diagram

qrep(B)Φk→B
// H0(B)

H0(B)

∼

OO
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is commutative, where the vertical arrow is induced by the derived Yoneda embedding.
Our claim follows.

In many situations, we will be studying dg-functors whose domain dg-category A is
(pre)triangulated and generated by a simpler dg-category: for instance, A

qe
≈ perdg(C).

In this case, the dg-lift uniquness problem can be reduced to generators:

Lemma 3.6.5. Let A and B be triangulated dg-categories, and assume that A
qe
≈

perdg(C) for some dg-category C. Then, ΦA→B is essentially injective if ΦC→B is
such.

Proof. Without loss of generality, we may identify A = perdg(C). There is a commuta-
tive diagram:

H0(RHom(perdg(C),B))

∼
��

ΦA→B
// Funex(H0(perdg(C)), H0(B))

��

H0(RHom(C,B)) ΦC→B
// Fun(H0(C), H0(B)),

where the left vertical arrow is induced by the Yoneda embedding C ↪→ perdg(C), and
the right vertical arrow is induced by its zeroth cohomology: H0(C) ↪→ H0(perdg(C)).
By Proposition 3.5.4, the left vertical arrow is an isomorphism; the claim now follows
from a direct argument.

Remark 3.6.6. The above argument works also if we consider A and B pretriangulated,
and A

qe
≈ pretr(C).

To end the chapter, we prove another relevant property of the functor (3.6.2):

Proposition 3.6.7. The functor (3.6.2) reflects isomorphisms.

Proof. Assume, for simplicity, that A and B are h-projective. Recall that a morphism
T → T ′ in H0(RHom(A,B)) = qrepr(A,B) is given by a roof

T
≈←− Q(T )→ T ′

in K(A,B), where the arrow Q(T ) → T is a quasi-isomorphism. So, it sufficient to
prove that any morphism of bimodules ϕ : T → T ′ is a quasi-isomorphism if H0(ϕ) :
H0(T ) → H0(T ′) is an isomorphism. Now, ϕ is a quasi-isomorphism if and only if
ϕA : TA → T ′A is an isomorphism in D(B) for all A ∈ A, which is equivalent to requiring
that ϕ′A : B(−, F (A))→ B(−, F ′(A)) is an isomorphism in D(B), where ϕ′A is the unique
morphism in D(B) such that the following diagram is commutative in D(B):

TA
ϕA //

≈
��

T ′A

≈
��

B(−, F (A))
ϕ′A // B(−, F ′(A)).
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Now, by the derived Yoneda embedding of B, ϕ′A is a quasi-isomorphism if and only if
ϕ′A(1F (A)) ∈ B(F (A), F ′(A)) is a homotopy equivalence. This means that [ϕ′A(1F (A))] =
H0(ϕ′A)([1F (A)]) is an isomorphism in H0(B), so by the Yoneda embedding of the (or-
dinary) category H0(B) this is equivalent to requiring that

H0(ϕ′A) : H0(B)(−, F (A))→ H0(B)(−, F ′(A))

is an isomorphism in Mod(H0(B)). Taking H0, the above commutative diagram be-
comes:

H0(T )A
H0(ϕ)A

//

∼
��

H0(T ′)A
∼
��

H0(B)(−, F (A))
H0(ϕ′A)

// H0(B)(−, F ′(A)).

By hypothesis, H0(ϕ)A is an isomorphism, so we deduce that H0(ϕ′A) is an isomorphism
for all A ∈ A; by the above discussion, this implies that ϕA : TA → T ′A is a quasi-
isomorphism for all A, and we are done.
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Part II

Uniqueness results of dg-lifts and
applications
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Chapter 4

Exceptional sequences and
glueings

The dg-lift uniqueness problem becomes a little simpler if we put additional hypotheses
on the domain dg-category A. Namely, we are interested in the case where A is trian-
gulated and H0(A) has a strong and full exceptional sequence, which is a very particular
case of semiorthogonal decomposition. Such categories arise in the geometric setting,
and they constitute, in some sense, the simplest interesting framework for our problem.

4.1 Semiorthogonal decompositions
We start by recalling the definitions and the main results about exceptional sequences
and semiorthogonal decompositions in triangulated categories. Possible references for
this part are [BLL04] and [KL14].

Definition 4.1.1. Let T be a triangulated category. A semiorthogonal decomposition
in two components of T consists of two strictly full triangulated subcategories T1 and
T2 of T (with embedding functors ij : Tj ↪→ T for j = 1, 2), such that:

• T(i2(A2), i1(A1)) ∼= 0 for all A1 ∈ T1 and A2 ∈ T2.

• For any A ∈ T there is a distinguished triangle

i2(A2) −→ A −→ i1(A1) −→ i2(A2)[1], (4.1.1)

with Ai ∈ Ti for i = 1, 2.

If T is the semiorthogonal decomposition of T1 and T2, we write

T = 〈T1,T2〉.

Remark 4.1.2. The factor T1 of 〈T1,T2〉 is the right orthogonal T⊥2 of T2:

T⊥2 = {A ∈ T : T(i2(A2), A) ∼= 0 ∀A2 ∈ T2}.
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Analogously, T2 is the left orthogonal ⊥T1 of T1. From this, we can easily show that T1
and T2 are thick triangulated subcategories of T (that is, closed under direct summands).

We may define semiorthogonal decompositions with more than two terms, induc-
tively. For example, a three-term semiorthogonal decomposition of T = 〈T1,T2,T3〉
consists of three strictly full subcategories T1,T2,T3 such that there are two-term
semiorthogonal decompositions T = 〈T1,T2 ∪T3〉 and T2 ∪T3 = 〈T2,T3〉 (or, equiv-
alently, T = 〈T1 ∪ T2,T3〉 and T1 ∪ T2 = 〈T1,T2〉); here we have abused notation,
writing T1 ∪T2 for the triangulated subcategory of T generated by that set of objects.
Exceptional sequences are particular examples of semiorthogonal decompositions:

Definition 4.1.3. Let T be a triangulated category. An object E ∈ T is called excep-
tional if

T(E,E[h]) =
{

k if h = 0
0 if h 6= 0.

An exceptional sequence is a sequence of exceptional objects (E1, . . . , En) in T such that
T(Ei, Ej [h]) = 0 for all i > j and all h ∈ Z. The exceptional sequence is called full if
{E1, . . . , En} is a set of generators of the triangulated category T. In this case, we write

T = 〈E1, . . . En〉.

Moreover, (E1, . . . , En) is said to be strong if T(Ei, Ej [h]) = 0 for all i, j = 1, . . . , n and
all h ∈ Z \ {0}.

The notation T = 〈E1, . . . , En〉 is consistent with the fact that a full exceptional
sequence gives a semiorthogonal decomposition of T, obtained with the triangulated
subcategories generated by each Ei.

Next, we establish some basic results about semiorthogonal decompositions. We
assume T = 〈T1,T2〉. The following lemma ensures that we can, in fact, speak of the
distinguished triangle (4.1.1) associated to an object A ∈ T:

Lemma 4.1.4. Let A,B ∈ T = 〈T1,T2〉, and let

TA = (i2(A2) −→ A −→ i1(A1) −→ i2(A2)[1]),
TB = (i2(B2) −→ B −→ i1(B1) −→ i2(B2)[1])

be two distinguished triangles associated to A and B, given by the definition. Moreover,
let f : A → B be a morphism in T. Then, there exists a unique morphism TA → TB of
distinguished triangles extending f .

Proof. Apply the cohomological functor T(−, i1(B1)) to TA and T(i2(A2),−) to TB.
The semiorthogonality hypothesis gives isomorphisms:

T(i1(A1), i1(B1)) ∼−→ T(A, i1(B1)),
T(i2(A2), i2(B2)) ∼−→ T(i2(A2), B).
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Then, there exist unique maps u : A1 → B1 and v : A2 → B2 such that the following
diagram is commutative:

i2(A2)

i2(v)
��

// A //

f

��

i1(A1)

i1(u)
��

i2(B2) // B // i1(B1).

Applying TR3, we find that those maps actually define a morphism of distinguished
triangles:

i2(A2)

i2(v)
��

// A //

f

��

i1(A1)

i1(u)
��

// i2(A2)[1]

i2(v)[1]
��

i2(B2) // B // i1(B1) // i2(B2)[1].

This morphism is uniquely determined by f .

Corollary 4.1.5. In the above setting, the embedding functor i1 : T1 ↪→ T has a left
adjoint i∗1 : T → T1, and the embedding functor i2 : T2 ↪→ T has a right adjoint
i!2 : T→ T2. Given A ∈ T, its associated distinguished triangle (4.1.1) is

i2(i!2(A)) −→ A −→ i1(i∗1(A)) −→ i2(i!2(A))[1], (4.1.2)

and the morphism A → i1(i∗1(A)) (resp. i2(i!2(A)) → A) is a component of the unit
(resp. counit) of the adjunction i∗1 a i1 (resp. i2 a i!2).

Proof. Let A ∈ T. Define i∗1(A) and i!2(A) as the objects in T1 and T2 in the distin-
guished triangle

TA = (i2(i!2(A)) −→ A −→ i1(i∗1(A)) −→ i2(i!2(A))[1])

given by the definition. Next, we show that the maps A→ i1(i∗1(A)) and i2(i!2(A))→ A
above satisfy the required universal properties, thus giving the functors i∗1 and i!2 together
with the unit and the counit of the adjunctions. Let A1 ∈ T1 and let A → i1(A1) be a
morphism. We associate to i1(A1) the following distinguished triangle:

Ti1(A) = ( 0 // i1(A1) i1(A1) // 0 );

then, by Lemma 4.1.4, the map A → i1(A1) induces a unique morphism TA → Ti1(A1).
In particular, there is a unique map i∗1(A)→ A1 such that the diagram

A //

��

i1(i∗1(A))

��

i1(A1) i1(A1).

is commutative. This is the required universal property. A similar argument gives the
right adjoint i!2.
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In some sense, an object A ∈ T = 〈T1,T2〉 is obtained as a “glueing” of i∗1(A) and
i!2(A), along the map i1(i∗1(A))→ i2(i!2(A))[1]. Let us make this intuition more precise.

Definition 4.1.6. Let C,D be (k-linear) categories, and let N ∈ Mod(D,C) be a
bimodule, covariant in D and contravariant in C. The glueing of C and D along N is
the category C ×N D, defined as follows. Objects are triples (C,D,m), where C ∈ C,
D ∈ D and m ∈ N(C,D) = NC

D . Morphisms (C,D,m)→ (C ′, D′,m′) are couples (u, v),
where u ∈ C(C,C ′), v ∈ D(D,D′), such that m′u = vm. Compositions and identities
are defined termwise.

Remark 4.1.7. It is sometimes useful to interpret an element m ∈ N(C,D) as a “gener-
alised morphism” from C to D, which will be stylised as m : C ⇀ D. Hence, morphisms
in C×N D can be interpreted as commutative diagrams such as

C
m /

u
��

D

v
��

C ′
m′ / D′.

Let T = 〈T1,T2〉 be a semiorthogonal decomposition. We define the glueing bimodule
Φ ∈ Mod(T2,T1) as

Φ(A1, A2) = T(i1(A1), i2(A2)[1]) (4.1.3)

with the obvious actions. There is a natural functor

T −→ T1 ×Φ T2, (4.1.4)

which is defined as follows. Given A ∈ T, let

i2(i!2(A)) −→ A −→ i1(i∗1(A)) mA−−→ i2(i!2(A))[1]

be its associated distinguished triangle (determined up to isomorphism). We map A to
the object (i∗1(A), i!2(A),mA) ∈ T1×Φ T2. Then, let f : A→ B be a morphism in T. By
Proposition 4.1.4 and Corollary 4.1.5, we have a morphism of distinguished triangles:

i2(i!2(A))

i2(i!2(f))
��

// A //

f

��

i1(i∗1(A)) mA //

i1(i∗1(f))
��

i2(i!2(A))[1]

i2(i!2(f))[1]
��

i2(i!2(B)) // B // i1(i∗1(B)) mB // i2(i!2(B))[1].

(4.1.5)

So, we map f to the couple (i∗1(f), i!2(f)). Notice that the definition of this functor
depends on the choice of the above maps mA, but different choices give isomorphic
functors. We have the following result, which is essentially a more precise version of
[KL14, Lemma 2.5], and explains how objects in T can be thought as “glueings”:

Proposition 4.1.8. The functor (4.1.4) is essentially surjective, full, and reflects iso-
morphisms. In particular, it is essentially injective.
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Proof. Let (A1, A2,m) ∈ T1 ×Φ T2. Take A = C(m)[−1], obtaining the distinguished
triangle:

A2 −→ A −→ A1
m−→ A2[1],

which is isomorphic to

i2(i!2(A)) −→ A −→ i1(i∗1(A)) mA−−→ i2(i!2(A))[1]

by Lemma 4.1.4. So, the functor maps A to (i∗1(A), i!2(A),mA), which is isomorphic to
(A1, A2,m). This proves essential surjectivity.

Next, we prove fullness. Let (u, v) : (i∗1(A), i!2(A),mA) → (i∗1(B), i!2(B),mB) be a
morphism. This is actually the following commutative square:

i1(i∗1(A)) mA //

i1(u)
��

i2(i!2(A))[1]

i2(v)[1]
��

i1(i∗1(B)) mB // i2(i!2(B))[1].

Applying the axiom TR3, we find f : A→ B and a morphism of distinguished triangles:

i2(i!2(A))

i2(v)
��

// A //

f

��

i1(i∗1(A)) mA //

i1(u)
��

i2(i!2(A))[1]

i2(v)[1]
��

i2(i!2(B)) // B // i1(i∗1(B)) mB // i2(i!2(B))[1].

By Lemma 4.1.4, this morphism is uniquely induced by f , in particular u = i∗1(f) and
v = i!2(f). This shows fullness.

Finally, it is easy to show that the functor reflects isomorphisms: if (i∗1(f), i!2(f))
is an isomorphism, then f is too an isomorphism, since it is part of the morphism
of distinguished triangles (4.1.5), where the two other components are assumed to be
isomorphisms.

In some cases, the glueing bimodule Φ of a semiorthogonal decomposition T =
〈T1,T2〉 happens to be right representable, hence inducing what we call the glueing
functor ϕ : T2 → T1 (determined up to isomorphism):

T(i1(A1), i2(A2)[1]) ∼= T1(A1, ϕ(A2)), (4.1.6)

naturally in A1 ∈ T1.

Proposition 4.1.9. Let T = 〈T1,T2〉 be a semiorthogonal decomposition. Then, the
existence of a glueing functor ϕ : T2 → T1 is equivalent to the existence of a right adjoint
i!1 of the inclusion i1 : T1 → T.
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Proof. Assume that the right adjoint i!1 exists. Then, we have a natural isomorphism

T(i1(A1), i2(A2)[1]) ∼= T1(A1, i
!
1i2(A2)[1]),

and so ϕ = i!1i2[1] is a glueing functor.
Conversely, assume the existence of ϕ : T2 → T1, together with a natural isomor-

phism
T(i1(A1), i2(A2)[1]) ∼= T1(A1, ϕ(A2)).

Denote by γA2 : i1ϕ(A2) → i2(A2)[1] the counit, so that for any f : i1(A1) → i2(A2)[1]
there exists a unique f ′ : A1 → ϕ(A2) such that f = γA2i1(f ′). Now, let X ∈ T. Its
canonical distinguished triangle gives a morphism i1i

∗
1(X) → i2i

!
2(X)[1], and moreover

there exists a unique fX : i∗1(X) → ϕi!2(X) such that the following diagram is commu-
tative:

i1i
∗
1(X) i1(fX)

// i1ϕi
!
2(X)
γ
i!2(X)
��

i1i
∗
1(X) // i2i

!
2(X)[1].

Next, we set i!1(X) = C(fX)[−1]. We may complete the above commutative square to a
morphism of distinguished triangles:

i1ϕi
!
2(X)[−1]

γ
i!2(X)[−1]

��

// i1i
!
1(X) //

ξX

��

i1i
∗
1(X) i1(fX)

// i1ϕi
!
2(X)
γ
i!2(X)
��

i2i
!
2(X) // X // i1i

∗
1(X) // i2i

!
2(X)[1].

Now, (γi!2(X))∗ : T(i1(−), i1ϕi!2(X)) → T(i1(−), i2i!2(X)[1]) is an isomorphism (it is
essentially the natural isomorphism which defines ϕ), and so by the five lemma (ξX)∗ :
T(i1(−), i1i!1(X)) → T(i1(−), X) is also an isomorphism. Since i1 is fully faithful, we
obtain an isomorphism

T(i1(−), X) ∼= T1(−, i!1(X)),

and we are done, recalling that we may define i!1 on morphisms in a unique way which
makes the above isomorphism natural in X.

4.2 The dg-glueing construction

The notion of semiorthogonal decomposition has been enhanced to the dg framework:
this is achieved with the glueing of two dg-categories along a dg-bimodule, which is a
“homotopy coherent” incarnation of the glueing of Definition 4.1.6. The definition and
the main properties of this construction, except Propositions 4.2.2 and 4.3.12, are all
taken from [KL14], sometimes with some slight modifications.



4.2. THE DG-GLUEING CONSTRUCTION 79

Definition 4.2.1. Let A and B be dg-categories, and let N : B A be a dg-bimodule.
The (differential graded, homotopy coherent) glueing of A and B along N is the dg-
category A ×N B , defined in the following way. Objects are triples (A,B,m), where
A ∈ A, B ∈ B, and m ∈ Z0(N(A,B)). A degree n morphism (A,B,m) → (A′, B′,m′)
is given by a lower triangular matrix

(u, v, h) =
(
u 0
h v

)
,

where u ∈ A(A,A′)n, v ∈ B(B,B′)n and h ∈ N(A,B′)n−1. Compositions are defined
by matrix multiplication with a sign rule:(

u′ 0
h′ v′

)(
u 0
h v

)
=
(

u′u 0
(−1)nh′u+ v′h v′v

)
,

whenever (u, v, h) has degree n. The differential of a morphism (u, v, h) : (A,B,m) →
(A′, B′,m′) of degree n is defined by

d

(
u 0
h v

)
=
(

du 0
dh+ (−1)n(m′u− vm) dv

)
.

As we may expect, the dg-glueing induces an ordinary glueing in cohomology. Let
A,B be dg-categories. Recall that, given N ∈ Cdg(B,A), we can take its cohomology
and obtain H0(N) ∈ Mod(H0(B), H0(A)). Hence, we can form the (ordinary) glueing
H0(A)×H0(N) H

0(B). There is a natural functor:

H0(A×N B) −→ H0(A)×H0(N) H
0(B),

(A,B,m) 7→ (A,B, [m]),
[(u, v, h)] 7→ ([u], [v]).

(4.2.1)

We get the following result, which is conceptually analogue to Proposition 4.1.8.
Proposition 4.2.2. The above functor is strictly surjective on objects, full and reflects
isomorphisms.
Proof. Surjectivity on objects is clear. Fullness is simple: if ([u], [v]) : (A,B, [m]) →
(A′, B′, [m′]), then [vm] = [m′u] as elements of H0(N(A,B′)), that is, there exists h ∈
N(A,B′)−1 such that dh = vm−m′u. Then, ([u], [v]) is the image of [(u, v, h)].

Now, we prove the last assertion. Let [(u, v, h)] : (A,B,m)→ (A′, B′,m′) be a mor-
phism such that ([u], [v]) is an isomorphism. By hypothesis we have dh = vm − m′u,
and an inverse ([u′], [v′]) of ([u], [v]). That is, u′ : A′ → A and v′ : B′ → B are closed
degree 0 maps such that {

u′u = 1A + dũ,

v′v = 1B + dṽ,{
uu′ = 1A′ + dũ′,

vv′ = 1B′ + dṽ′,

v′m′ −mu′ = dh′,
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for suitable maps ũ, ũ′, ṽ, ṽ′ of degree −1, and for a suitable h′ ∈ N(A′, B)−1. Let us
construct a left and a right inverse for [(u, v, h)] in H0(A×N B), namely [(u′, v′, h′+z′0)]
and [(u′, v′, h′ + z′1)], where z′0, z′1 are suitable elements of Z−1(A′, B) to be defined (it
is essential to find z′0, z′0 closed, for it ensures us that (u′, v′, h′ + z′0) and (u′, v′, h′ + z′1)
are also closed). A posteriori the equality [(u′, v′, h′ + z′0)] = [(u′, v′, h′ + z′1)] will hold,
and the (double-sided) inverse of [(u, v, h)] will be established. We start by setting

r = −mũ+ ṽm− h′u− v′h,
r′ = −m′ũ′ + ṽ′m′ − hu′ − vh′.

A direct computation gives dr = 0, dr′ = 0. We define:

z′0 = ru′,

z′1 = v′r′.

z′0 and z′1 are indeed closed; we have [z′0u] = [r] and [vz′1] = [r′] in H−1(N(A,B)), so

(h′ + z′0)u+ v′h = dh̃−mũ+ ṽm,

hu′ + v(h′ + z′1) = dh̃′ −m′ũ′ + ṽ′m′,

for suitable elements h̃, h̃′ ∈ N(A,B)−2. Finally we obtain

(u′, v′, h′ + z′0)(u, v, h)
= (u′u, v′v, (h′ + z′0)u+ v′h) = (1A, 1B, 0) + (dũ, dṽ, dh̃−mũ+ ṽm)
= (1A, 1B, 0) + d(ũ, ṽ, h̃),

and

(u, v, h)(u′, v′, h′ + z′1)
= (uu′, vv′, hu′ + v(h′ + z′1)) = (1A′ , 1B′ , 0) + (dũ′, dṽ′, dh̃′ −m′ũ′ + ṽ′m′)
= (1A′ , 1B′ , 0) + d(ũ′, ṽ′, h̃′).

Hence the proof is completed.

Remark 4.2.3. Let A be a dg-category. The glueing A ×hA A of A with itself along
the diagonal bimodule is by definition equal to the dg-category Mor A of morphisms
in A. Hence, we see that the above functor (4.2.1) is actually a generalisation of the
natural functor (1.3.6). Recalling Remark 1.3.16, we find out that it can be viewed as
an incarnation of Φ∆1→A:

Φ∆1→A : H0(Mor A) = H0(RHom(∆1,A))→ Fun(∆1, H0(A)) = MorH0(A).

So, Proposition 4.2.2 actually implies the dg-lift uniqueness result when the domain
dg-category is ∆1.
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As expected, the quasi-equivalence class of the glueing A1 ×N A2 depends only on
the quasi-isomorphism class of N and on the quasi-equivalence class of A1 and A2
(see [KL14, Proposition 4.14]. Now, assume that A1 and A2 have strict zero objects
(if they are pretriangulated, this assumption can be made without loss of generality,
upon replacing them with quasi-equivalent dg-categories). Then, there are natural fully
faithful dg-functors:

i1 : A1 → A1 ×N A2, A1 7→ (A1, 0, 0),
i2 : A2 → A1 ×N A2, A2 7→ (0, A2, 0).

i1 has a left adjoint i∗1, and i2 has a right adjoint i!2, which are actually the “source” and
“target” dg-functors:

i∗1 : A1 ×N A2 → A1, (A1, A2,m) 7→ A1,

i!2 : A1 ×N A2 → A2, (A1, A2,m) 7→ A2.

We also know that the dg-functor i1 has a right adjoint in the bicategory Bimod of
dg-bimodules. This is given by

i!1 : A1 ×N A2 → Cdg(A1), (A1, A2,m) 7→ C(m∗)[−1],

where m∗ : hA1 → NA2 , f 7→ mf is the morphism corresponding to m ∈ NA1
A2

under the
Yoneda lemma. Moreover, the following equalities are satisfied:

i∗1i1 = 1, i!2i2 = 1, i∗1i2 = 0, i!2i1 = 0, i!1 � i2 ∼= N [−1].

The following result tells us that the dg-glueing is actually an enhancement of the
notion of semiorthogonal decomposition.
Proposition 4.2.4 ([KL14, Lemma 4.3, Corollary 4.5]). Let A1,A2 be dg-categories,
and let N : A2  A1 be a bimodule. If A1 and A2 are pretriangulated, then so is the
glueing A1 ×N A2; moreover, in this case, we have a semiorthogonal decomposition

H0(A1 ×N A2) = 〈H0(A1), H0(A2)〉 (4.2.2)

induced by the functors H0(i1) and H0(i2). The glueing bimodule of this semiorthogonal
decomposition is isomorphic to H0(N).

This proposition has a converse statement:
Proposition 4.2.5 ([KL14, Proposition 4.10]). Let A be a pretriangulated dg-category,
and assume that there exists a semiorthogonal decomposition H0(A) = 〈T1,T2〉. Then,
letting Ai be the full dg-subcategory of A with the same objects as Ti (i = 1, 2), there is
a quasi-equivalence

A
qe
≈ A1 ×N A2, (4.2.3)

where N : A2  A1 is the bimodule obtained by the diagonal hA by restriction and shift:
N(A1, A2) = A(i1(A1), i2(A2)[1]) for all A1 ∈ A1 and A2 ∈ A2, where i1 and i2 are the
obvious inclusion dg-functors.
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Remark 4.2.6. Actually, the proof of Proposition 4.2.5 shows that, if we identify A =
A1 ×N A2 (up to quasi-equivalence), then the inclusion functors i1 : A1 → A and
i2 : A2 → A can be identified with the canonical inclusions associated to the glueing.
Remark 4.2.7. Given a glueing A1 ×N A2, it is easily seen that the right adjoint i!1 is a
quasi-functor if and only if N is a quasi-functor. In this case, assuming A1 and A2 to be
pretriangulated, H0(N) can be identified with the glueing functor of the semiorthogonal
decomposition 〈H0(A1), H0(A2)〉.

Also the derived category of a glueing has a semiorthogonal decomposition with
factors given by the derived categories of the factors. We will need a more precise
version of this, involving bimodules A1 ×N A2 → B. Set A = A1 ×N A2 for simplicity.
First, notice that there are exact fully faithful functors

I1 = L Ind1Bop⊗i2 : D(A2,B)→ D(A,B),
I2 = L Ind1Bop⊗i1 : D(A1,B)→ D(A,B).

As (derived) left Kan extensions of bimodules, they are left adjoints of restriction func-
tors:

I !
1 = Res1Bop⊗i2 = − �L i2,
I !

2 = Res1Bop⊗i1 = − �L i1.

Since i1 a i!1, then it can be shown that

− �L i!1 a − �L i1 : D(A,B)� D(A1,B),

with counit given by composition with the counit i1 � i!1 → hA:

− �L i1i!1 → − �L hA.

We have the following proposition, which is adapted from [KL14, Corollary A.4]:

Proposition 4.2.8. The above functors I1 and I2 induce a semiorthogonal decomposi-
tion:

D(A,B) = 〈D(A2,B),D(A1,B)〉. (4.2.4)

Moreover, for any F ∈ D(A,B), there is a distinguished triangle:

(F �L i1) �L N [−1]→ F �L i2 → I∗1 (F ), (4.2.5)

where (F �L i1) �L N [−1]→ F �L i2 is induced by the counit of − �L i!1 a − �L i1:

(F �L i1) �L N [−1]
qis
≈ F �L (i1 �L i!1) �L i2 → F �L i2.

Idea of proof. By [KL14, Lemma A.1], we have a dg-equivalence (actually, a strict dg-
isomorphism):

(A1 ×N A2)op ∼= A2
op ×Nop A1

op.
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Now, by [KL14, Proposition A.2], we have an equivalence of derived categories:

D(A,B) = D(B⊗ (A2
op ×Nop A1

op))
∼= D((B⊗A2

op)×B⊗Nop (B⊗A1
op)),

where B⊗Nop is defined in the obvious way:

(B⊗Nop)((B,A2), (B′, A1)) = B(B,B′)⊗Nop(A2, A1) = B(B,B′)⊗N(A1, A2).

Moreover, the above equivalence is the (derived) extension of the functor which maps

(B, (A2, A1,m)) 7→ ((B,A2), (B,A1), 1B ⊗m).

Now, the result follows from [KL14, Proposition 4.6].

The above semiorthogonal decomposition restricts to quasi-representable bimodules,
hence giving us a characterisation of quasi-functors from a glueing ([KL14, Proposition
A.7, (ii)]):
Proposition 4.2.9. Assume that, in the framework of Proposition 4.2.8, B is pretrian-
gulated and N : A2  A1 is a quasi-functor. Then, (4.2.4) restricts to a semiorthogonal
decomposition:

qrepr(A,B) = 〈qrepr(A2,B), qrepr(A1,B)〉. (4.2.6)
By Proposition 4.1.8, we deduce that a quasi-functor F : A → B is determined, up

to isomorphism, by its components F1 = I !
2(F ) : A1 → B and F2 = I∗1 (F ) : A2 → B

(beware of indices!), and by the map ψ : F2 → F1 �L N , obtained by (4.2.5) as follows:

F1 �L N [1]→ F �L i2 → F2
ψ−→ F1 �L N.

More precisely, applying Proposition 4.1.8, we immediately get the following:
Corollary 4.2.10. Assume the hypotheses of Proposition 4.2.9. Let F,G : A → B be
quasi-functors, and let ϕ1 : F �L i1 → G �L i1 and ϕ′2 : F �L i2 → G �L i2 be morphisms of
quasi-functors such that the diagram

(F �L i1) �L N [−1] //

ϕ1�LN [−1]
��

F �L i2
ϕ′2
��

(G �L i1) �L N [−1] // G �L i2

is commutative in qrepr(A2,B). Complete this to a morphism of distinguished triangles:

(F �L i1) �L N [−1] //

ϕ1�LN [−1]
��

F �L i2
ϕ′2
��

// I∗1 (F )
ϕ2

��

ψF // (F �L i1) �L N

ϕ1�LN
��

(G �L i1) �L N [−1] // G �L i2 // I∗1 (G) ψG // (G �L i1) �L N ;

then, there exists a morphism ϕ : F → G such that I∗1 (ϕ) = ϕ2, and I !
2(ϕ) = ϕ�L i1 = ϕ1.

Moreover, if ϕ1 and ϕ2 are isomorphisms, so is ϕ.
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The above corollary is the main tool we will employ to address the dg-lift uniqueness
problem in the case when the domain dg-category is a glueing. Namely, the attempt is
to obtain the uniqueness result for the glueing assuming that it holds for the factors.

4.3 Dg-lifts and exceptional sequences
From now on, we assume that k is a field. With a little abuse of terminology, we
say that a triangulated dg-category A admits a full (and strong) exceptional sequence
(E0, . . . , En) if A is generated (in the sense of Definition 3.2.7) by a full dg-subcategory
E = {E0, . . . , En} such that H0(E) gives a full (and strong) exceptional sequence of
H0(A). We state a simple preparatory result:

Lemma 4.3.1. Let A be a triangulated dg-category, and assume it is generated by a
full dg-subcategory E which has homology concentrated in degree 0. Then, A is quasi-
equivalent to perdg(H0(E)).

Proof. By Remark 3.2.8, A is quasi-equivalent to perdg(E). By Proposition 1.3.15, E is
quasi-equivalent to H0(E), hence we conclude, applying Proposition 3.2.6.

Remark 4.3.2. We remark that any pretriangulated dg-category A having a full ex-
ceptional sequence is actually triangulated. More in general, if A is a pretriangulated
dg-category such that H0(A) = 〈H0(A1), H0(A2)〉 and the full dg-subcategories A1 and
A2 are triangulated, then so is A. This follows from the general fact that a triangulated
category is idempotent complete if it has a semiorthogonal decomposition with idem-
potent complete factors, see [BDF+14, Lemma 4.6]. Another way to see this can be
sketched as follows. First, apply Proposition 4.2.5 and view A, up to quasi-equivalence,
as a glueing of A1 and A2. Then, [KL14, Proposition 4.6] gives a semiorthogonal de-
composition of the derived category:

D(A) = 〈D(A1),D(A2)〉,

with inclusion functors Ik = L Indik , where ik : Ak → A is the canonical inclusion, for
k = 1, 2. For any A-module M , there is a canonical distinguished triangle

I2I
!
2(M)→M → I1I

∗
1 (M).

I1 and I2 preserve quasi-representable modules, so since A is pretriangulated we find out
that M is quasi-representable if I !

2(M) and I∗1 (M) are quasi-representable. Conversely,
letM

qis
≈ hX . Then, sinceH0(A) = 〈H0(A1), H0(A2)〉, there is a canonical distinguished

triangle in D(A):
hi2(X2) → hX → hi1(X1).

This triangle has to be functorially associated to M , so we have that I∗1 (M)
qis
≈ hX1 and

I !
2(M)

qis
≈ hX2 , and they are quasi-representable. Now, to obtain our desired result, we

must show that any direct summand M in D(A) of a quasi-representable A-module is
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quasi-representable. But I∗1 (M) and I !
2(M) are themselves direct summands of quasi-

representable dg-modules, hence they are quasi-representable, and we conclude that M
itself is quasi-representable.

We now come to the dg-lift uniqueness problem. We are able to obtain positive
results in some cases where the domain dg-category has a full and strong exceptional
sequence. It is known that per(k) is a triangulated category generated by the exceptional
object k (viewed as complex concentrated in degree 0), which is the only indecomposable
object (up to shift): every object in per(k) is obtained from k by means of shifts and
finite direct sums. So, we are able to prove the following:

Lemma 4.3.3. Let B be a triangulated dg-category. The functor

Φperdg(k)→B : H0(RHom(perdg(k),B))→ Funex(per(k), H0(B))

is an equivalence.

Proof. As in the proof of Lemma 3.6.5, we have the following commutative diagram:

H0(RHom(perdg(k),B))

∼
��

Φperdg(k)→B
// Funex(H0(perdg(k)), H0(B))

��

H0(RHom(k,B)) Φk→B
// Fun(k, H0(B)),

The functor Φk→B is an equivalence by Lemma 3.6.4. Also, the right vertical arrow is
an equivalence: since any object of H0(perdg(k)) ∼= per(k) is of the form⊕N

i=1 k[ni]⊕mi ,
we see that any exact functor per(k)→ B is determined by its value on k, and the same
is true for natural transformations. We conclude that Φperdg(k)→B is an equivalence, as
claimed.

The above result tells us that the dg-lift uniqueness problem is completely solved, in
the trivial case of exceptional sequences of length 1: if A is a triangulated dg-category
with a single exceptional object E0, then by Lemma 4.3.1 we have that A

qe
≈ perdg(k).

Now, we would like to address the problem for dg-categories with full and strong excep-
tional sequences of length greater than 1.

The free case

Let A be a triangulated and locally perfect dg-category, admitting a two-term full and
strong exceptional sequence (E0, E1). By Lemma 4.3.1, we have that A

qe
≈ perdg(E),

where E is a k-linear category with two objects E0, E1 and a finite-dimensional hom-
space (we are under the local properness assumption). We immediately notice that E is
free, namely, it is isomorphic to the free k-category k[Q] over the quiver Q with objects
E0, E1 and hom-space E(E0, E1). The dg-lift uniqueness problem, in the free case, has
a positive solution. The technique is based on homotopies of dg-functors, as explained
in Section 1.3. First, let us give a precise definition of free k-category generated by a
quiver:
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Definition 4.3.4. Let Q be a (small) quiver. The category k[Q] freely generated by Q
over k is the k-linear category defined as follows:

• Ob(k[Q]) = ObQ.

• For a, b ∈ Q, k[Q](a, b) is the free k-module generated by all finite strings of
composable arrows with initial source a and final target b. Identities are the empty
strings. Compositions are given by string concatenation, extended by bilinearity.

Proposition 4.3.5. For any quiver Q, the category k[Q], viewed as a dg-category, is a
cofibrant object in dgCat.

In order to prove this, we need a preparatory lemma:

Lemma 4.3.6. Let p : Ṽ → V be a surjective quasi-isomorphism in C(k).

1. Z∗(p) : Z∗(Ṽ )→ Z∗(V ) is surjective. In other words, closed elements of V can be
lifted to closed elements of Ṽ .

2. Let x, y ∈ V be such that x = dy. Let x̃ ∈ p−1(x). Then, there exists ỹ ∈ p−1(y)
such that x̃ = dỹ.

Proof. (1) Let x ∈ Z∗(V ) be a closed element. Consider [x] ∈ H∗(V ). Then, there exists
x̃ ∈ Z∗(Ṽ ) such that p(x̃) = x + dz, for some z ∈ V , because H∗(p) is surjective. p is
surjective, so there exists z̃ ∈ Ṽ such that p(z̃) = z. Hence, we find that p(x̃) = x+dz =
x+ p(dz̃), so in the end x̃− dz̃ ∈ Z∗(Ṽ ) is an element of p−1(x).

(2) By hypothesis, H∗(p) : H∗(Ṽ )→ H∗(V ) is an isomorphism. We have:

H∗(p)[x̃] = [p(x̃)] = [x] = [dy] = [0],

hence [x̃] = [0], that is, there exists ỹ1 ∈ Ṽ such that x̃ = dỹ1. Now,

p(x̃) = x = dy = dp(ỹ1),

so y − p(ỹ1) is closed. By part (1), there exists ỹ2 ∈ Z(Ṽ ) such that p(ỹ2) = y − p(ỹ1).
Finally, set

ỹ = ỹ1 + ỹ2.

By construction, p(ỹ) = y, and dỹ = dỹ1 + dỹ2 = dỹ1 = x̃.

Proof (Proposition 4.3.5). Let A,B be small dg-categories, let F : k[Q] → B be a dg-
functor, and let G : A→ B be a trivial fibration in dgCat. We have to find a dg-functor
F̃ : k[Q]→ A such that GF̃ = F .

By Remark 1.3.4, G is surjective on objects. Hence, we can find a lift F̃ of F on
objects: GF̃ (a) = F (a) for all a ∈ Q.

Next, we lift F on morphisms, in order to obtain a dg-functor F̃ . Since k[Q] is freely
generated by Q, it suffices to map any arrow f : a→ b of Q to a closed degree 0 morphism
F̃ (f) such that GF̃ (f) = F (f). This can be done by Lemma 4.3.6, part 1.
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Now, we have the tools to prove the dg-lift uniqueness result in the free case. The
actual argument of proof is very simple:

Lemma 4.3.7. Let Q be a quiver, let B be a dg-category, and let F,G : k[Q] → B be
dg-functors. Let ϕ : H0(F ) → H0(G) be a natural transformation. Then, there exists a
directed homotopy ϕ : F → G which induces ϕ (recall Remark 1.3.14). Moreover, ϕ is a
homotopy if ϕ is a natural isomorphism.

Proof. By hypothesis, for any f : a→ b in Q, there is a commutative diagram in H0(B):

F (a)
ϕa //

[F (f)]
��

G(a)

[G(f)]
��

F (b)
ϕb // G(b).

We use these data to define a directed homotopy ϕ : k[Q] → Mor B from F to G. To
define it on objects, we choose for any a ∈ Q a representative ϕa : F (a) → G(a) of ϕa,
and set

ϕ(a) = (F (a), G(a), ϕa).

Next, since k[Q] is freely generated by Q, it is sufficient to map any arrow of Q to a
closed degree 0 morphism in Mor B. To do so, we choose for any f : a → b in Q a
morphism h(f) ∈ B(F (a), G(b))−1 such that

dh(f) = G(f)ϕa − ϕbF (f),

and we set
ϕ(f) = (F (f), G(f), h(f)).

This definition extends to k[Q] and gives the desired directed homotopy: by construction,
H0(ϕ) = ϕ. If ϕ is a natural isomorphism, then we have already observed in general
that ϕ takes values in P (B), and it is a right homotopy (see Remark 1.3.14).

From this, we finally obtain the desired dg-lift uniqueness result:

Theorem 4.3.8. Let A and B be triangulated dg-categories. Assume that A is gener-
ated by a free k-linear category of the form k[Q], for some quiver Q. Then, ΦA→B is
essentially injective.

Proof. By Lemma 4.3.1, we have that A is quasi-equivalent to perdg(k[Q]), so by
Lemma 3.6.5 it is sufficient to prove that Φk[Q]→B is essentially injective. Let F̂ , Ĝ ∈
Hqe(k[Q],B). Since k[Q] is cofibrant, they are represented by actual dg-functors F and
G. Now, Lemma 4.3.7 tells us that H0(F ) ∼= H0(G) implies that F is homotopic to G,
hence F̂ = Ĝ in Hqe(A,B), by Corollary 1.3.13.
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This result has a geometric application. Let X be a quasi-projective scheme, and
let Ddg(QCoh(X)) be an enhancement of the derived category D(QCoh(X)) of quasi-
coherent sheaves on X. This category is idempotent complete; for simplicity identify
it to H0(Ddg(QCoh(X))). The full dg-subcategory Perfdg(X) of Ddg(QCoh(X)) whose
objects are the compact objects in D(QCoh(X)) is an enhancement of the category of
perfect complexes Perf(X). These enhancements are uniquely determined up to quasi-
equivalence, by [LO10, Corollary 7.8, Theorem 7.9]. If X = Pn, then Perf(X) has a
strong and full exceptional sequence:

Theorem 4.3.9 ([Bĕı78]). The category Perf(Pn) admits a strong and full exceptional
sequence (O,O(1), . . . ,O(n)), with the property that for any 0 ≤ d ≤ d′ ≤ n, the hom-
space Perf(X)(O(d),O(d′)) is isomorphic to the vector space Sd′−d of homogeneous poly-
nomials of degree d′ − d in n+ 1 indeterminates.

In particular, Perf(P1) has a two-term strong and full exceptional sequence (O,O(1)),
and the hom-space Perf(P1)(O,O(1)) has dimension 2. So, Theorem 4.3.8 is applicable,
and yields:

Corollary 4.3.10. Let B be a triangulated dg-category. Let F,G : Perfdg(P1) → B be
quasi-functors. Then, if H0(F ) ∼= H0(G), we have that F ∼= G as quasi-functors.

Now, using the results of Section 0.2, we obtain the following uniqueness result of
Fourier-Mukai kernels:

Corollary 4.3.11. Let X and Y be schemes satisfying the hypotheses of both Theorems
0.2.2 and 0.2.1, with X = P1. Let E , E ′ ∈ D(QCoh(X × Y )) be such that

ΦX→Y
E

∼= ΦX→Y
E ′ : Perf(X)→ D(QCoh(Y )),

Then E ∼= E ′.

The above result was proved by Canonaco and Stellari with geometric techniques,
see [CS12a, Lemma 4.2].

The glueing technique

Now, we attempt to solve the dg-lift uniqueness problem for dg-categories which have
exceptional sequences with arbitrary length. The next result will allow us to apply the
technique explained in Corollary 4.2.10.

Proposition 4.3.12. Let A be a locally proper and triangulated dg-category, and assume
that it admits a full exceptional sequence (n ≥ 0):

H0(A) = 〈E0, . . . En〉.

Then, A is quasi-equivalent to the glueing A0,...,n−1 ×N An, where A0,...,n−1 is the
full dg-subcategory of A whose objects are the same as the triangulated subcategory
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〈E0, . . . En−1〉, and analogously An is the full dg-subcategory whose objects are the same
as that of 〈En〉; N is obtained from the diagonal bimodule by restriction and shift:

N(A′, A′′) = A(i1(A′), i2(A′′)[1]),

where i1 and i2 are the obvious inclusion dg-functors. Moreover, A is smooth and N is
a quasi-functor.

Proof. If n = 0, by Lemma 4.3.1 we have that A
qe
≈ perdg(k), which is smooth since

k is smooth viewed as a dg-category (see Remark 3.5.7). Assume n > 0. The glue-
ing decomposition of A follows directly from Proposition 4.2.5. Arguing by induction,
assume that A′ = A0,...,n−1 is smooth. Both A′ and An are triangulated, being en-
hancements of thick subcategories of H0(A) (recall Remark 4.1.2); An is smooth, being
quasi-equivalent to perdg(k). Now, applying Lemma 3.5.8, N : An  A′ is a perfect
bimodule if and only if NAn is a perfect right A′-module for all An ∈ An. Now, view
NAn as a bimodule A′op  k: again by Lemma 3.5.8, NAn is perfect if and only if NA′

An
is

a perfect k-module for all A′ ∈ A′, and this is true by the local properness assumption.
Hence, N is perfect, and by Proposition 4.9 of [KL14] we deduce that A is smooth.
Moreover, since A′ is triangulated and NAn is perfect for all An ∈ An, we deduce that
NAn is quasi-representable for all An, that is, N is a quasi-functor.

In the above framework, we know that H0(A) has a semiorthogonal decomposition
〈{E0, . . . En−1}, En〉. Since N : An → A′ is a quasi-functor, it induces a glueing functor,
which we call again N abusing notation, defined by the natural isomorphism

H0(A)(i1(A′), i2(A′′)[1]) ∼= H0(A′)(A′, N(A′′)). (4.3.1)

Now, since An = 〈En〉
qe
≈ perdg(k), we have by Lemma 4.3.3 that the quasi-functor N is

completely determined by the glueing functorN in homotopy, which in turn is completely
determined by the value N(En). Clearly, this observation holds for any quasi-functor
defined on An. Moreover, the counit

ε : H0(i1) ◦N [−1]→ H0(i2)

of the isomorphism (4.3.1) is the natural transformation induced in cohomology by the
adjunction of quasi-functors i1 a i!1. Again, by Lemma 4.3.3, we may identify it to the
morphism

α = εEn : i1N(En[−1])→ i2(En). (4.3.2)

Now, let F : A → B be a quasi-functor, with B triangulated. By the above discussion,
it should now be clear that the morphism (F �L i1) �L N [−1] → F �L i2 in the triangle
(4.2.5) can be identified with

H0(F )(α) : Fi1N(En[−1])→ Fi2(En). (4.3.3)

So, Corollary 4.2.10 boils down to the following:
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Corollary 4.3.13. Let A be as in Proposition 4.3.12. Let B be a triangulated dg-
category, and let F,G : A → B be quasi-functors. Let ϕ1 : F �L i1 → G �L i1 be a
morphism of quasi-functors and ϕ′2 : F (i2(En)) → G(i2(En)) be a morphism in H0(B).
Assume that the diagram

Fi1N(En[−1])H
0(F )(α)

//

H0(ϕ1)N(En[−1])
��

Fi2(En)

ϕ′2
��

Gi1N(En[−1])H
0(G)(α)

// Gi2(En)

(4.3.4)

is commutative in H0(B). Complete this to a morphism of distinguished triangles in
H0(B):

Fi1N(En[−1])H
0(F )(α)

//

H0(ϕ1)N(En[−1])
��

Fi2(En)

ϕ′2
��

// F (C(α))
ϕ2
��

ψF // Fi1N(En)

H0(ϕ1)N(En)
��

Gi1N(En[−1])H
0(G)(α)

// Gi2(En) // G(C(α)) ψG // Gi1N(En);

then, there exists a morphism ϕ : F → G of quasi-functors such that H0(ϕ)C(α) = ϕ2,
and ϕ �L i1 = ϕ1. Moreover, if ϕ1 and ϕ2 are isomorphisms, so is ϕ.

Remark 4.3.14. It is essential that the arrow Fi1N(En)→ Gi1N(En) in the above com-
mutative diagram comes from a morphism of quasi-functors ϕ1; otherwise, the argument
doesn’t work, as we will see in a counterexample in the next section.

In the glueings of the above form A0,...,n−1×N An, the quasi-functor N is determined
by the object N(En) = C, therefore we will simplify notation and write A0,...,n−1×C An.
Now, the idea is to apply Corollary 4.3.13 iteratively, in order to deduce dg-lift uniqueness
results for categories with exceptional sequences of any length. Unfortunately, this
technique is not very successful, in fact it doesn’t give us a result for any exceptional
sequence; even worse, the cases which are relevant in geometric applications remain
unsolved. However, it is sufficient to show that dg-lift uniqueness holds in some cases
even if the category of generators is not free. By working out the argument, we will see
what is its weak point.

We start from a simple free case which we already treated, namely, we assume that
A = perdg(∆1), where ∆1 is the standard 1-simplex category, freely generated by the
diagram E0

e0−→ E1. From Remark 4.3.2, we know that A is quasi-equivalent to pretr(∆1);
so, A is a triangulated dg-category with a full and strong exceptional sequence {E0, E1}.
It can be proved that H0(A) has three indecomposable objects, that is, E0, E1,C(e0).
Any object of H0(A) can be obtained by the indecomposable objects by means of shifts
and direct sums; moreover, a natural transformation of exact functors ϕ : F → G from
H0(A) to another triangulated category T is completely determined by the maps ϕE0 ,
ϕE1 and ϕC(e0) together with the compatibilities expressed by the following commutative
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diagram:

F (E0)
ϕE0
��

F (e0)
// F (E1)

ϕE1
��

F (j0)
// F (C(e0))

ϕC(e0)
��

F (p0)
// F (E0)[1]

ϕE0 [1]
��

G(E0) G(e0)
// G(E1) G(j0)

// G(C(e0)) G(p0)
// G(E0)[1],

(4.3.5)

where j0 and p0 are the maps obtained in the triangle which extends e0:

E0
e0−→ E1

j0−→ C(e0) p0−→ E0[1].

It is worth noticing that H0(A) has other full and strong exceptional sequences, other
than {E0, E1}. Indeed, we have:

H0(A) = 〈E0, E1〉 = 〈E1,C(e0)〉 = 〈C(e0), E0[1]〉.

So, by Proposition 4.3.12, we may identify A, up to quasi-equivalence, to either of the
following glueings:

A
qe
≈ 〈E0〉 ×C1 〈E1〉
qe
≈ 〈E1〉 ×C2 〈C(e0)〉
qe
≈ 〈C(e0)〉 ×C3 〈E0[1]〉,

where, abusing notation, we have denoted 〈X〉 the full dg-subcategory of A whose objects
are the same as the triangulated subcategory of H0(A) generated by X. A simple
computation gives:

C1 = E0[1],
C2 = E1[1],
C3 = C(e0)[1].

For example, C1 is characterised to be the object of 〈E0〉 such that there is a natural
isomorphism

H0(A)(E0, E1[1]) ∼= 〈E0〉(E0, C1),

and we immediately see that it is necessarily E0[1]. This isomorphism maps the identity
1E0[1] to e0[1] : E0[1] → E1[1], so we deduce that the morphism (4.3.2) is indeed given
by e0 : E0 → E1. Analogously, in the other situations we find the maps j0 : E1 → C(e0)
and p0 : C(e0)→ E0[1].

Now, let B be a triangulated dg-category, and let F,G : A → B be quasi-functors.
Assume we are given an isomorphism ϕ : H0(F ) → H0(G). By Lemma 4.3.3, we may
identify the objects F (E0), G(E0) and so on to quasi-functors obtained from F and G
by restriction. Also, we may view ϕE0 , ϕE1 and ϕC(e0) as morphisms of quasi-functors.
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The hypothesis gives us the following commutative diagram:

F (E0)
ϕE0
��

H0(F )(e0)
// F (E1)

ϕE1
��

H0(F )(j0)
// F (C(e0))

ϕC(e0)
��

H0(F )(p0)
// F (E0)[1]

ϕE0 [1]
��

G(E0)H
0(G)(e0)

// G(E1)H
0(G)(j0)

// G(C(e0))H
0(G)(p0)

// G(E0)[1].

Now, it is clear that we can apply Corollary 4.3.13 to A, viewed as generated by one
of the three exceptional sequences {E0, E1}, {E1,C(e0)} or {C(e0), E0[1]}. In the end,
what we obtain is the following:

Lemma 4.3.15. Let A be a triangulated and locally perfect dg-category, generated by
a two-term strong and full exceptional sequence with 1-dimensional hom-space. Let
B be another triangulated dg-category, let F,G : A → B be quasi-functors, and let
ϕ : H0(F ) → H0(G) be a natural transformation. Then, for any two-element subset
S of {E0, E1,C(e0)} ⊆ A, there exists a morphism of quasi-functors ϕ : F → G such
that H0(ϕ) is equal to ϕ on S. Moreover, if ϕ is an isomorphism, then so is ϕ.

So, we don’t lift a given natural transformation ϕ as above to a morphism of quasi-
functors (it is actually impossible to do so in general, as we will see in the next section),
but we may find a “partial lift”. This enables us to go on and prove dg-lift uniqueness
for dg-categories with particular three-term exceptional sequences, namely, dg-categories
obtained glueing along “selected objects”. We just give some sketches. Let A′ be a
triangulated dg-category generated by a two-term strong and full exceptional sequence
with 1-dimensional hom-space, as in the previous discussion. Consider

A = A′ ×C 〈E2〉, (4.3.6)

where 〈E2〉 is perdg(k), where k is notationally identified with E2. Denote by ik the nat-
ural inclusion dg-functors (k = 1, 2). Assume that C is an object among {E0, E1,C(e0)}
or is obtained as direct sums of (shifts of) at most two of such objects. For example,
take C = C(e0), or C = E⊕7

0 ⊕ E1[4], and so on. Let B a triangulated dg-category,
and let F,G : A → B be quasi-functors. Assume we are given ϕ : H0(F ) → H0(G).
Then, consider ϕ ◦ i1 : H0(Fi1)→ H0(Gi1); by the above Lemma 4.3.15, we may find a
morphism of quasi-functors ϕ1 : F �L i1 → G �L i1 such that H0(ϕ1)C = ϕi1(C): this is
because ϕ1 can be found as a lift of ϕ◦i1 on any couple of objects among {E0, E1,C(e0)},
and hence it must be a lift also on objects as C obtained with direct sums and shifts of
at most two such objects. Now, the hypothesis gives us a commutative diagram:

Fi1(C[−1])H
0(F )(α)

//

ϕi1(C)[−1])=H0(ϕ1)C[−1]
��

Fi2(E2)
ϕi2(E2)
��

// F (C(α))
ϕC(α)
��

Gi1N(En[−1])H
0(G)(α)

// Gi2(E2) // G(C(α)).

So, applying Corollary 4.3.13, we find a morphism ϕ : F → G of quasi-functors such that
ϕ �L i1 = ϕ1 and H0(ϕ)C(α) = ϕC(α). It is an isomorphism if ϕ is such.
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Now, it should be clear how we can go on. We shall glue A = A′ ×C 〈E2〉 to 〈E3〉
along C(α), and get another “partial lifting” result. So, we obtain dg-lift uniqueness
for dg-categories with exceptional sequences of arbitrary length, but of very particular
nature. The result is unsatisfactory, and in some sense it shows us that the dg-lift
uniqueness problem is very difficult even for dg-categories of very simple kind.

4.4 Counterexamples (attempts)
As we proved, the dg-lift uniqueness holds when the domain dg-category is generated by
a free k-linear category. The “glueing technique” explained in the previous discussion
gives some examples where the result holds even if the domain dg-category is generated
by a non-free subcategory. However, it should be pointed out that the result in the free
case is somewhat stronger: it tells us that the functor Φk[Q]→B is essentially injective,
from which we deduce that Φperdg(k[Q])→B is such, if B is a triangulated dg-category.
Actually, there exist dg-categories D such that Φperdg(D)→B is essentially injective but
ΦD→B is not, as we are going to show with the following counterexample.

A “semi-counterexample” to uniqueness

Consider the simplest non-free category which serves as exceptional sequence, namely,
the category D with three objects E0, E1, E2, freely generated over k by the following
diagram:

E0
e0 //

0
!!

E1

e1
��

E2,

with the unique relation e1e0 = 0. Now, the category A = pretr(D) is pretriangulated
and generated by the exceptional sequence {E0, E1, E2}. As we know, it can be viewed
as a glueing of the form 〈E0, E1〉×C 〈E2〉, where here 〈E0, E1〉

qe
≈ pretr(∆1)

qe
≈ perdg(∆1),

and 〈E2〉
qe
≈ perdg(k). To understand what is C ∈ 〈E0, E1〉, we recall that it is defined

by the natural isomorphism

H0(A)(i1(−), i2(E2)[1]) ∼= 〈E0, E1〉(−, C).

Then, a simple inspection shows that C = C(e0)[1].
The previous discussion on dg-categories of the form (4.3.6) shows that the dg-lift

uniqueness holds true in this case, that is, the functor ΦA→B is essentially injective for
all (pre)triangulated dg-categories B. What about ΦD→B? The answer is no. To see
this, we employ homotopies, as we did for the result in the free case. The category D
is not cofibrant, as we will see, but there is a rather standard technique that produces
a cofibrant replacement D̃. The idea is that any nontrivial relation, such has e1e0 =
0, should be substituted with a “homotopy coherent” variant, namely, something like
e1e0 = de01 for some degree −1 morphism e01. Let us make this idea more precise.
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Example 4.4.1. We consider the dg-category D̃ with three objects E0, E1, E2 (the same
object set as D), and morphisms freely generated by ẽ0 ∈ D(E0, E1)0, ẽ1 ∈ D(E1, E2)0

and ẽ01 ∈ D(E0, E2)−1, with the only nontrivial differential defined on D(E0, E2) by
dẽ01 = ẽ1ẽ0:

E0
ẽ0 //

ẽ01 !!

E1

ẽ1
��

E2.

(4.4.1)

Now, we prove that the dg-category D̃ is cofibrant. Let G : A → B be a trivial
fibration in dgCat, and let F : D̃ → B be a dg-functor. By Remark 1.3.4, we can find
a lift F̃ of F on objects. Next, we define F̃ on ẽ0, ẽ1, applying Lemma 4.3.6 in order
to lift F (ẽ0) and F (ẽ1) to closed degree 0 morphisms F̃ (ẽ0) and F̃ (ẽ1). Then, we set
F̃ (ẽ1ẽ0) = F̃ (ẽ1)F̃ (ẽ0); applying again Lemma 4.3.6, we find an element F̃ (ẽ01) which
lifts F (ẽ01), such that dF̃ (ẽ01) = F̃ (ẽ1ẽ0) = F̃ (dẽ01). This clearly suffices to obtain the
desired dg-functor F̃ , and hence shows that D̃ is cofibrant.

There is a trivial fibration P : D̃→ D, defined as follows. P is the identity on objects,
moreover:

G(ẽ0) = e0,

G(ẽ1) = e1,

G(ẽ01) = 0.

Now, we are able to show that D is not cofibrant, as mentioned above. If D is cofibrant,
then P : D̃→ D has a section P ′:

D̃

P
��

D

P ′
>>

D.

P ′ is the identity on objects, because P is such. Moreover, P (P ′(ei)) = ei = P (ẽi),
then P ′(ei) = ẽi, for i = 0, 1. We conclude that P ′(e1e0) = ẽ1ẽ0 = dẽ01 6= 0, which is a
contradiction, because e1e0 = 0 and so P ′(e1e0) must be 0.

We now come to the counterexample. Let B be a pretriangulated dg-category, such
that Z0(B) has a zero object, and containing an object not isomorphic to 0 in H0(B).
We define dg-functors F,G : D̃→ B as follows:

F (Ei) = G(Ei) = Ai (i = 0, 1, 2)

on objects, where A0 6∼= 0 in H0(B), A1 ∼= 0 in Z0(B), A2 = A0[1]; moreover, we set

F (ẽi) = G(ẽi) = 0, (i = 0, 1),
F (ẽ01) = 0,
G(ẽ01) = 1(A0,0,1).
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Clearly, H0(F ) ∼= H0(G), since they are both equal to zero on morphisms. Now, assume
that F is homotopic to G. Then, we have a dg-functor ϕ : D̃→ P (B) such that Sϕ = F
and Tϕ = G. In particular:

ϕ(Ei) = (Ai, Ai, λi)

on objects, where λi : Ai → Ai induces an isomorphism in H0(B) for i = 0, 1, 2, and

ϕ(ẽi) = (0, 0, hi) (i = 0, 1),
ϕ(ẽ01) = (0, 1(A0,0,1), h),

on morphisms, for some suitable maps hi and h. Notice that ϕ(ẽ1)ϕ(ẽ0) = 0. The
requirement that ϕ is a dg-functor gives the following conditions:

dhi = 0 (i = 0.1),
0 = ϕ(ẽ1ẽ0) = ϕ(dẽ01) = dϕ(ẽ01) = (0, 0, dh+ 1(A0,0,1)λ0).

In particular, we find that 1(A0,0,1)λ0 is a coboundary. This in turn implies that λ0 is a
coboundary, since 1(A0,0,1) is closed and invertible. That is, the zero map A0 → A0 in
H0(B) is an isomorphism, which means precisely that A0 ∼= 0 in H0(B). Contradiction!
We conclude that F and G are not homotopic dg-functors, in spite of being isomorphic
when taking H0.

It is not always possible to lift isomorphisms from the H0 level

The glueing technique explained in the previous section is based on “partial lifting”
results as Lemma 4.3.15. Its failure to give general dg-lift uniqueness results lies in the
fact that such partial liftings cannot be extended to global liftings, that is, Lemma 4.3.15
cannot be strengthened, as we are going to see.

Recall that ∆1 is cofibrant, viewed as a dg-category. So, to define a quasi-functor
F : perdg(∆1) → B it is sufficient to define a dg-functor on ∆1 ↪→ perdg(∆1), if B is
triangulated. Moreover, recall that a natural transformation

ϕ : H0(F )→ H0(G) : H0(perdg(∆1))→ H0(B)

is determined by a commutative diagram of the form (4.3.5). That said, we define a quasi-
functor F : perdg(∆1)→ perdg(∆1), together with a natural automorphism ϕ : H0(F )→
H0(F ), as follows:

E0 ⊕ E1

(
e0 0
0 j0

)
// E1 ⊕ C(e0)

(
j0 0
0 p0

)
// C(e0)⊕ E0[1](

1 0
p0 1

)
��

(
p0 0
0 −e0[1]

)
// E0[1]⊕ E1[1]

E0 ⊕ E1 (
e0 0
0 j0

)// E1 ⊕ C(e0)(
j0 0
0 p0

)// C(e0)⊕ E0[1](
p0 0
0 −e0[1]

)// E0[1]⊕ E1[1].
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With the above commutative diagram, we mean that F (E0) = E0 ⊕ E1, F (E1) = E1 ⊕
C(e0), and F (e0) =

(
e0 0
0 j0

)
(direct sums in Z0(perdg(∆1))); for simplicity, we have

identified the dg-functor which defines F with the restriction F|∆1 . The morphism ϕ
is defined by the vertical arrows. Notice that ϕ differs from the identity just on C(e0).
Moreover,

H−1(Hom(E0 ⊕ E1, E1 ⊕ C(e0)) ∼= 0.
The identity morphism 1: F → F clearly gives a “partial lift” of ϕ. Now, we try to find
isomorphisms which globally lift ϕ. We notice the following:
Lemma 4.4.2. Let A be a dg-category. Let (A,B, f) and (A′, B′, f ′) be objects of Mor A,
and let n ∈ Z such that

Hn−1(A(A,B′)) ∼= 0.
Next, assume we are given a closed degree n morphism (u, v, h) : (A,B, f)→ (A′, B′, f ′).
Then, if u = dũ and v = dṽ, there exists h̃ : A→ B′ such that

(u, v, h) = d(ũ, ṽ, h̃).

Proof. By hypothesis we have d(u, v, h) = 0, in particular

dh+ (−1)n(f ′u− vf) = 0.

Now, f ′u = d(f ′ũ) and vf = d(ṽf), and so

d(h+ (−1)n(f ′ũ− ṽf)) = 0

In other words, h + (−1)n(f ′ũ − ṽf) is a (n − 1)-cocycle. Hence, by hypothesis, it is a
(n− 1)-coboundary:

h+ (−1)n(f ′ũ− ṽf) = dh̃.

Finally, we compute:

d

(
ũ 0
h̃ ṽ

)
=
(

u 0
h+ (−1)n(f ′ũ− ṽf) + (−1)n−1(f ′ũ− ṽf) v

)
=
(
u 0
h v

)
.

Now, let ϕ : F → F be a morphism of quasi-functors such that H0(ϕ) = ϕ. We
know that ϕ is completely determined by its restriction ϕ|∆1 : F|∆1 → G|∆1 . Recalling
Remarks 1.3.16 and 4.2.3, we identify ϕ to (the class of) a closed degree 0 morphism

(ϕE0 , ϕE1 , h) : (F (E0), F (E1), F (e0))→ (F (E0), F (E1), F (e0))

in Mor(perdg(∆1)). By hypothesis, H0(ϕEi) = [1Ei ] for i = 0, 1; so we are in the
conditions to apply Lemma 4.4.2 to (ϕE0 − 1E0 , ϕE1 − 1E1 , h), and thus deduce that
[(ϕE0 , ϕE1 , h)] = [(1E0 , 1E1 , 0)]. Hence, ϕ is the identity morphism 1F , and must induce
the identity morphism even of C(e0), namely, ϕC(e0) = [1C(e0)]. This is a contradiction,
by definition of ϕ. We have actually proved the following:
Lemma 4.4.3. Let A = perdg(∆1). The functor

ΦA→A : H0(RHom(A,A))→ Fun(H0(A), H0(A))

is not full.



4.4. COUNTEREXAMPLES (ATTEMPTS) 97

A failed attempt and some final considerations

As we have seen in the previous discussion, Lemma 4.3.15 cannot be extended to give
“global liftings”. Hence, the glueing technique explained in the previous section does not
give the dg-lift uniqueness result when the domain dg-category is a glueing of the form

A = 〈E0, E1〉 ×C 〈E2〉,

where the abuse of notation 〈E0, E1〉 here denotes perdg(∆1), and C is a direct sum
where every object in the set of indecomposables {E0, E1,C(e0)} appears. For example,
set C = (E0 ⊕E1 ⊕C(e0))[1]. The resulting dg-category A is pretriangulated (actually,
triangulated) and has a three-term exceptional sequence. With a direct computation,
we are able to understand what is the subcategory of generators, namely, the full sub-
category of A whose object set is {E0, E1, E2}. Indeed, we know that

H0(A)(i1(−), i2(E2)[1]) ∼= 〈E0, E1〉(−, (E0 ⊕ E1 ⊕ C(e0))[1]);

so, we find out that the only nontrivial hom-spaces are

H0(A)(E1, E2) = k〈e1, e2〉,
H0(A)(E0, E2) = k〈e2e0, e3〉,

with the only nontrivial relation e1e0 = 0. So, H0(A) is generated by the following
diagram:

E0
e0 //

e3
!!

E1

e1
��

e2
��

E2.

Now, let E be a cofibrant replacement of the k-linear category described by the above
picture: to obtain it, just change e1e0 = 0 to e1e0 = de01, in a similar fashion as (4.4.1).

The dg-category pretr(E) is apparently a good candidate for finding a counterex-
ample to dg-lift uniqueness. The idea is to define dg-functors F,G : E → B, with B a
suitable pretriangulated dg-category, show that they are not homotopic but their exten-
sions F̃ , G̃ : pretr(E) → B are isomorphic in cohomology: H0(F̃ ) ∼= H0(G̃). Showing
that F is not homotopic to G and that H0(F ) ∼= H0(G) is a rather simple task; unfor-
tunately, finding an isomorphism in cohomology of their extensions has proved to be a
very hard problem, for which we ran out of ideas. Nevertheless, we sketch our attempt
in the following example.
Example 4.4.4. We start by defining dg-functors F,G : E → pretr(∆1). View E as a
full subcategory of pretr(E). Let j0 : E1 → C(e0) and i0 : E0 → C(e0) be the inclusion
maps associated to C(e0): j0 is a closed degree 0 maps, whereas i0 has degree −1 and
di0 = j0e0. Since e1e0 = de01, we may apply the universal property of the cone and find
out that there exists a unique closed degree 0 map e′1 : C(e0)→ E2 such that

e1 = e′1j0,

e01 = e′1i0.
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So, we find out that in order to define a dg-functor F on E, it is sufficient to define it
on objects E0, E1, E2,C(e0), in such a way that F (C(e0)) ∼= C(F (e0)), and on the closed
degree 0 morphisms e0, e

′
1, e2, e3. Indeed, F (j0) and F (i0) are forced to be the canonical

maps associated to the cone C(F (e0)), and the values F (e1) and F (e01) are obtained
from the above relations. That said, we define F,G : E→ pretr(∆1) as follows:

F (E0) = G(E0) = E0 ⊕ E1,

F (E1) = G(E1) = E1 ⊕ C(e0),
F (C(e0)) = G(C(e0)) = C(e0)⊕ E0[1],
F (E2) = G(E2) = C(e0)⊕ E0[1]⊕ E1,

F (e0) = G(e0) =
(
e0 0
0 j0

)
,

F (e′1) = G(e′1) =
( 1 0

0 1
0 0

)
,

F (e2) =
(
j0 −1
0 p0
0 0

)
,

G(e2) =
(
j0 −1
0 0
0 0

)
,

F (e3) = G(e3) =
(

0 j0
0 0
0 1

)
.

Direct sums are taken in Z0(perdg(∆1)). We identified E0[1] = C(j0) in the definitions of
F (C(e0)) and F (E2), which is actually an abuse of notation; analogously, the canonical
inclusion map C(e0)→ C(j0) is identified with the projection p0 : C(e0)→ E0[1]. With
this identification, we have that

F (j0) =
(
j0 0
0 p0

)
,

F (p0) =
(
p0 0
0 −e0[1]

)
.

It can be shown that F and G are not homotopic. To see this, it is useful to remark
that a homotopy ϕ : F → G is given by homotopy equivalences ϕEi : F (Ei)→ G(Ei) for
all i = 0, 1, 2 subject to the various compatibilities in H0, together with the following
commutative diagram in H0:

F (C(e0))

F (e′1)
��

ϕC(e0)
// G(C(e0))

G(e′1)
��

F (E2)
ϕE2 // G(E2),

where ϕC(e0) is “functorial”: it is the cone of ϕ(e0) : ϕE0 → ϕE1 in H0(Mor(perdg(∆1)))
(recall that ϕ is a dg-functor from E to the dg-category of morphisms). The details are
left to the reader.
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Next, we attempted to show that the extensions F̃ , G̃ : pretr(E) → perdg(∆1) were
isomorphic in cohomology, but this is actually false, as we are going to show. Both
the domain and codomain dg-categories are smooth (Proposition 4.3.12) and locally
perfect, so by Theorem 3.5.9 we know that quasi-functors pretr(E) → perdg(∆1) and
perdg(∆1)→ pretr(E) have adjoints. By Theorem 4.3.8, we know that Φperdg(∆1)→pretr(E)

is essentially injective; by Proposition 3.6.3, we know that this implies (it is actually
equivalent to) the essential injectivity of Φpretr(E)→perdg(∆1). Hence, by the fact that F is
not homotopic to G, we deduce that H0(F̃ ) 6∼= H0(G̃). In spite of this, it can be shown
that there exist homotopy equivalences

ϕE0 : F (E0)→ G(E0),
ϕE1 : F (E1)→ G(E1),

ϕC(e0) : F (C(e0)→ G(C(e0)),
ϕE2 : F (E2)→ G(E2)

such that the following diagram, which is the analogue of (4.3.4), is commutative in
H0(perdg(∆1)):

F (E0 ⊕ E1 ⊕ C(e0))H
0(F )(α)

//

ϕE0⊕ϕE1⊕ϕC(e0)
��

F (E2)
ϕ2
��

G(E0 ⊕ E1 ⊕ C(e0))H
0(G)(α)

// G(E2).

A direct computation (left as an exercise) shows that the morphism α is given by

α =
(
e3, e2, e

′
1

)
.

The above homotopy equivalences can be defined as follows:

ϕE0 = 1F (E0),

ϕE1 = 1F (E1),

ϕC(e0) =
(

1 0
p0 1

)
,

ϕE2 =
(

1 0 0
p0 1 0
0 0 1

)
.

So, this example, even if ultimately unsatisfactory, shows that the glueing technique
needs the condition that the morphism Fi1N [−1]→ Gi1N [−1] is induced by a morphism
of quasi-functors Fi1 → Gi1.

The above example can be modified taking pretr(E) as the target dg-category, in
the hope of finding a counterexample. Unfortunately, this dg-category is complicated
enough to make the task of defining an isomorphism of functors in H0 very hard (for
example, we are unable to describe the indecomposable objects of tria(E)). The author
is even unable to conjecture whether the dg-lift uniqueness should hold true or not, for
quasi-functors defined on this dg-category.
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Chapter 5

A∞-functors

Another way to study the homotopy theory of dg-categories comes from the theory of
A∞-categories and A∞-functors. They are, respectively, a homotopy coherent incar-
nation of dg-categories and dg-functors. A∞-functors are actually a model for quasi-
functors; their advantage over quasi-representable bimodules relies in their “concrete-
ness”: they are defined by elementary (even if quite complicated) formulae, which can
be employed in rather direct arguments. This formalism will allow us to prove a dg-lift
uniqueness result with some additional hypothesis on the functors involved; the result
has some interesting geometric applications.

5.1 A∞-categories and functors

From now on, k will be assumed to be a field. The basic notions of the theory of
A∞-categories and functors are taken directly from [Sei08], whose conventions will be
followed. We warn the reader especially about sign conventions, which are possibly the
most annoying feature of the theory. If it feels more comfortable, just assume that
char k = 2, at least at a first reading.

We will be working with strictly unital A∞-categories and functors. The formal
definitions are as follows:

Definition 5.1.1. A strictly unital A∞-category A consists of a set of objects Ob A, a
graded k-vector space A(X0, X1) for any couple of objects X0, X1 ∈ A, and multilinear
composition maps for any order d ≥ 1:

µdA : A(Xd−1, Xd)⊗ . . .⊗A(X0, X1)→ A(X0, Xd)[2− d], (5.1.1)

satisfying the following collection of equations (for all d ≥ 1):

d∑
m=1

d−m∑
n=0

(−1)znµd−m+1
A (fd, . . . , fn+m+1, µ

m
A(fn+m, . . . , fn+1), fn, . . . , f1) = 0, (5.1.2)

101
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where by definition zn = |f1| + . . . + |fn| − n. Moreover, for any object X ∈ A, there
exists a (necessarily unique) morphism 1X ∈ A(X,X)0 which satisfies:

µ1
A(1X) = 0,

(−1)|f |µ2
A(1X1 , f) = µ2

A(f, 1X0) = f, ∀ f ∈ A(X0, X1),
µdA(fd−1, . . . , fn+1, 1Xn , fn, . . . , f1) = 0,
∀ d > 2, fk ∈ A(Xk−1, Xk), ∀ 0 ≤ n < d.

(5.1.3)

Unwinding the above definition, we find out that that the map µ1
A is a coboundary

which endows the hom-spaces A(X,Y ) with a structure of chain complex. The compo-
sition µ2

A is not associative, but its deviation from being so is measured by the higher
order maps µdA.

Definition 5.1.2. Let A and B be (strictly unital) A∞-categories. An A∞-functor
F : A→ B consists of a map of sets

F 0 : Ob A→ Ob B,
X 7→ F 0(X) = F (X),

and multilinear maps

F d : A(Xd−1, Xd)⊗ . . .⊗A(X0, X1)→ B(F (X0), F (Xd))[1− d], (5.1.4)

subject to the following equations, for all d ≥ 1:∑
r≥1

∑
s1+...+sr=d

µrB(F sr(fd, . . . , fd−sr+1), . . . , F s1(fs1 , . . . , f1))

=
d∑

m=1

d−m∑
n=0

(−1)znF d−m+1(fd, . . . , fn+m+1, µ
m
A(fn+m, . . . , fn+1), fn, . . . , f1),

(5.1.5)

where si ≥ 1 for all i. Moreover, F is required to satisfy the following strict unitality
condition:

F 1(1X) = 1F (X), ∀X ∈ A,
F d(fd−1, . . . , fn+1, 1Xn , fn, . . . , f1) = 0,
∀ d ≥ 2, fk ∈ A(Xk−1, Xk),∀ 0 ≤ n < d.

(5.1.6)

Given A∞-functors F : A → B and G : B → C, their composition G ◦ F is defined
as follows:

(G ◦ F )0 = G0 ◦ F 0,

(G ◦ F )d(fd, . . . , f1)
=
∑
r≥1

∑
s1+...+sr=d

Gr(F sr(fd, . . . , fd−sr+1), . . . , F s1(fs1 , . . . , f1)),
(5.1.7)

whenever d ≥ 1, with si ≥ 1.
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Remark 5.1.3. Any dg-category A can be viewed as an A∞-category, setting

µ1
A(f) = (−1)|f |df,

µ2
A(g, f) = (−1)|f |gf,

µdA = 0, ∀ d > 2.

As we see, apart from sign twists, a dg-category is an A∞-category whose higher com-
positions (for d > 2) vanish. From now on, any dg-category will be implicitly viewed in
this way as an A∞-category.

It is interesting to see how the definition of A∞-functor behaves if the domain and
codomain are assumed to be dg-categories. If F : A → B is an A∞-functor between
dg-categories, the degree d equation (5.1.5) boils down to:

µ1
B(F d(fd, . . . , f1)) +

d−1∑
j=1

µ2
B(F j(fd, . . . , fd−j+1), F d−j(fd−j , . . . , f1))

=
d−1∑
n=0

(−1)znF d(fd, . . . , fn+2, µ
1
A(fn+1), fn, . . . , f1)

+
d−2∑
n=0

(−1)znF d−1(fd, . . . , fn+3, µ
2
A(fn+2, fn+1), fn, . . . , f1).

(5.1.8)

In the even simpler case when F : E→ B is an A∞-functor where E is a k-linear category
and B is a dg-category, the degree d equation defining F then reduces to the following:

µ1
B(F d(fd, . . . , f1)) +

d−1∑
j=1

µ2
B(F j(fd, . . . , fd−j+1), F d−j(fd−j , . . . , f1))

=
d−2∑
n=0

(−1)znF d−1(fd, . . . fn+3, µ
2
E(fn+2, fn+1), fn, . . . , f1).

(5.1.9)

It is also interesting to see what is the composition of an A∞-functor F : A → B
(between dg-categories) with a dg-functor G : B→ C. Such a dg-functor, viewed as an
A∞-functor, is characterised by having Gd = 0 for all d > 1. Formula (5.1.7) becomes
very simple:

(G ◦ F )d(fd, . . . , f1) = G1(F d(fd, . . . , f1)), (5.1.10)

for all d ≥ 1.

Example 5.1.4. Let A be a dg-category, viewed as an A∞-category. As an exercise, let
us write down what happens when we view the dg-category of morphisms Q = Mor A
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(see Definition 1.3.11) as an A∞-category. First:

µ1
Q

(
u 0
h v

)
= (−1)|u|

(
du 0

dh+ (−1)|u|(f ′u− vf) dv

)

= (−1)|u|
(

(−1)|u|µ1
A(u) 0

(−1)|u|−1µ1
A(h) + (−1)|u|((−1)|u|µ2

A(f ′, u)− µ2
A(v, f)) (−1)|u|µ1

A(v)

)

=
(

µ1
A(u) 0

−µ1
A(h) + (−1)|u|µ2

A(f ′, u)− µ2
A(v, f) µ1

A(v)

)
.

Moreover:

µ2
Q

((
u′ 0
h′ v′

)
,

(
u 0
h v

))

=
(

(−1)|u|u′u 0
(−1)|u|((−1)|u|h′u+ v′h) (−1)|u|v′v

)

=
(

µ2
A(u′, u) 0

(−1)|u|µ2
A(h′, u)− µ2

A(v′, h) µ2
A(v′, v)

)
.

Given A∞-categories A and B, there is an A∞-category Fun∞(A,B) of (strictly
unital) A∞-functors. Its definition involves describing (A∞-)natural transformations of
A∞-functors.

Definition 5.1.5. Let F,G : A → B be A∞-functors. A degree g pre-natural transfor-
mation h : F → G is consists of a sequence of maps (h0, h1, . . .) such that

h0 : X 7→ h0
X ∈ B(F (X), G(X))g, X ∈ A,

and hd is a family of multilinear maps

hd : A(Xd−1, Xd)⊗ . . .⊗A(X0, X1)→ B(F (X0), G(Xd))[g − d]

for any family of objects X0, . . . , Xd ∈ A. Pre-natural transformations F → G form the
graded vector space Fun∞(A,B)(F,G). Compositions are described in [Sei08, Paragraph
(1d)]. For example, we have that

µ1(h)0
X = µ1

B(h0
X), ∀X ∈ A.

Moreover, we require the strict unitality condition:

hd(fd−1, . . . , fn+1, 1Xn , fn, . . . , f1) = 0, (5.1.11)

for all d ≥ 1 and 0 ≤ n < d, with fk ∈ A(Xk−1, Xk).
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Remark 5.1.6. It is worth writing down the coboundary formula for a pre-natural trans-
formation h : F → G when F,G : A → B are A∞-functors between dg-categories. If
d ≥ 1, we have:

µ1(h)d(fd, . . . , f1) = Ad −Bd, (5.1.12)

where

Ad =µ1
B(hd(fd, . . . , f1))

+ µ2
B(Gd(fd, . . . , f1), hX0) + (−1)zd(|h|−1)µ2

B(hXd , F d(fd, . . . , f1))

+
d−1∑
j=1

µ2
B(Gj(fd, . . . , fd−j+1), hd−j(fd−j , . . . , f1))

+
d−1∑
j=1

(−1)zd−j(|h|−1)µ2
B(hj(fd, . . . , fd−j+1), F d−k(fd−j , . . . , f1)),

(5.1.13)

and

Bd =
d−1∑
n=0

(−1)zn+|h|−1hd(fd, . . . , fn+2, µ
1
A(fn+1), fn, . . . , f1)

+
d−2∑
n=0

(−1)zn+|h|−1hd−1(fd, . . . , fn+3, µ
2
A(fn+2, fn+1), fn, . . . , f1),

(5.1.14)

given composable morphisms f1, . . . , fd with first source X0 and final target Xd. Notice
that the term Bd is similar to the right hand side of (5.1.8).

Closed degree 0 pre-natural transformations of A∞-functors are properly called nat-
ural transformations. They can be characterised as directed homotopies, in the sense
explained by the following result.

Lemma 5.1.7. Let A,B be dg-categories. Let F,G : A→ B be A∞-functors. There is
a bijection between the set of (closed, degree 0) natural transformations F → G and the
set of A∞-functors ϕ : A→ Mor B such that Sϕ = F and Tϕ = G:

ϕd = (F d, Gd, hd)↔ hd. (5.1.15)

Proof. Let ϕ : A → Mor B an A∞-functor as in the hypothesis. In particular, for any
string of composable maps f1, . . . , fd with first source X0 and final target Xd, we have

ϕd(fd, . . . , f1) = (F d(fd, . . . , f1), Gd(fd, . . . , f1), hd(fd, . . . , f1))

as a morphism (F (X0), G(X0), hX0) → (F (Xd), G(Xd), hXd). Notice that F d(. . .) and
Gd(. . .) have degree |f1|+ . . .+ |fd|+ 1− d, that is, zd + 1, whereas hd(. . .) has degree
zd. Now, we unwind the equation (5.1.8) which defines ϕ. By Example 5.1.4, we have

µ1(ϕd) = (µ1
B(F d), µ1

B(Gd),−µ1
B(hd) + (−1)zd+1µ2

B(hXd , F d)− µ2
B(Gd, hX0)).
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Moreover:

µ2(ϕj(fd, . . . , fd−j+1), ϕd−j(fd−j , . . . , f1))
= µ2((F j , Gj , hj), (F d−j , Gd−j , hd−j))
= (µ2

B(F j , F d−j), µ2
B(Gj , Gd−j), (−1)zd−j+1µ2

B(hj , F d−j)− µ2
B(Gj , hd−j)).

Now, we find out that the left hand side of (5.1.8), projected to the third component, is
equal to the following:

−µ1
B(hd(fd, . . . , f1))− µ2

B(Gd(fd, . . . , f1), hX0)− (−1)zdµ2
B(hXd , F d(fd, . . . , f1))

−
d−1∑
j=1

µ2
B(Gj(fd, . . . , fd−j+1), hd−j(fd−j , . . . , f1))

−
d−1∑
j=1

(−1)zd−jµ2
B(hj(fd, . . . , fd−j+1), F d−j(fd−j , . . . , f1)).

We immediately notice that the above term is equal to −Ad when |h| = 0 (see (5.1.13)).
Moreover, the right hand side of (5.1.8), projected to the third component, is equal to
−Bd when |h| = 0 (see (5.1.14)). Now, it is clear that any A∞-functor ϕ : A → Mor B
such that Sϕ = F and Tϕ = G defines a closed degree 0 natural transformation h : F →
G, taking the projection of ϕ to the third component; conversely, given h : F → G closed
and of degree 0, setting

ϕd = (F d, Gd, hd)
we obtain an A∞-functor with the desired properties. Clearly, these mappings are mu-
tually inverse. Moreover, the scrict unitality condition (5.1.6) for ϕ is clearly equivalent
to the strict unitality condition (5.1.11) for h.

If A and B are dg-categories, then so is Fun∞(A,B). Actually, this is an incarnation
of the internal hom in Hqe, as mentioned in [Kel06, Paragraph 4.3]:

Proposition 5.1.8. The dg-category RHom(A,B) can be identified with the dg- category
Fun∞(A,B) of strictly unital A∞-functors from A to B.

The functor ΦA→B has clearly an incarnation in this setting:

ΦA→B : H0(Fun∞(A,B))→ Fun(H0(A), H0(B)),
F 7→ H0(F ), H0(F )(f) = [F 1(f)],
[h]µ1 7→ H0(h), H0(h)X = [h0

X ],
(5.1.16)

where here [·]µ1 denotes the cohomology class with respect of the coboundary µ1 of
Fun∞(A,B)(F,G). Recalling Lemma 5.1.7, the action of the above functor on mor-
phisms can also be viewed in terms of directed homotopies. Given ϕ : A→ Mor B such
that Sϕ = F and Tϕ = G, we may identify H0(ϕ) to the ordinary functor

H0(A)→ Mor(H0(B))
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obtained by the following composition:

H0(A)→ H0(Mor B) (1.3.6)−−−−→ Mor(H0(B)).

5.2 Uniqueness of dg-lifts
The goal of this section is to prove a dg-lift uniqueness result using the formalism and
techniques of A∞-functors. We will need the following (simplified) obstruction theory
result, which can be proved with a direct computation. The analogue (general) result is
proved for A∞-algebras in [LH03, Corollaire B.1.5].

Lemma 5.2.1. Let E be a k-linear category, let B be a dg-category, and let n ≥ 2 be an
integer. Suppose that we have a finite sequence (F 0, F 1, . . . , Fn−1), where F 0 : ObE→
Ob B, X 7→ F (X) = F 0(X) and

F d : E(Xd−1, Xd)⊗ . . .⊗ E(X0, X1)→ B(F (X0), F (Xd))[1− d],

is a multilinear map, for all d = 1, . . . , n − 1. Assume that (5.1.9) is satisfied for all
d = 1, . . . , n− 1. Then, the expression

n−2∑
j=0

(−1)zjFn−1(fn, . . . fj+3, µ
2
E(fj+2, fj+1), fj , . . . , f1)

−
n−1∑
j=1

µ2
B(F j(fn, . . . , fn−j+1), Fn−j(fn−j , . . . , f1))

is a µ1
B-cocycle, for any chain of composable maps f1, . . . , fn.

Another key tool in our argument is Lemma 4.4.2, which we write down in its “A∞
version”:

Lemma 5.2.2. Let A be a dg-category. Let (A,B, f) and (A′, B′, f ′) be objects in
Q = Mor A (viewed as an A∞-category), and let n ∈ Z such that

Hn−1(A(A,B′)) = 0.

Next, assume that we are given a degree n morphism (u, v, h) : (A,B, f) → (A′, B′, f ′)
such that µ1

Q(u, v, h) = 0. Then, if u = µ1
A(ũ) and v = µ1

A(ṽ), there exists h̃ : A → B′

such that
(u, v, h) = µ1

Q(ũ, ṽ, h̃).

Proof. Recall Example 5.1.4. u = µ1
A(ũ) means (−1)n−1u = dũ, and analogously

(−1)n−1v = dṽ. Apply Lemma 4.4.2 to (−1)n−1(u, v, h):

(−1)n−1(u, v, h) = d(ũ, ṽ, h̃) = (−1)n−1µ1
Q(ũ, ṽ, h̃),

and the claim follows.
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We are going to prove the following claim, which is actually a lifting result of natural
transformations:

Proposition 5.2.3. Let E be a k-linear category, viewed as a dg-category concentrated
in degree 0, and let B be a dg-category. Let F,G : E→ B be quasi-functors, such that

Hj(B(F (E), G(E′))) = 0, (5.2.1)

for all j < 0 and for all E,E′ ∈ E. Let ϕ : H0(F )→ H0(G) be a natural transformation.
Then, there exists a morphism ϕ : F → G in H0(RHom(E,B)) such that H0(ϕ) = ϕ.

We obtain the following theorem, which is the announced dg-lift uniqueness result:

Theorem 5.2.4. Let E be a k-linear category, viewed as a dg-category concentrated in
degree 0, and let B be a triangulated dg-category. Let F,G : E → B be quasi-functors,
such that

Hj(B(F (E), F (E′))) ∼= 0, (5.2.2)

for all j < 0, for all E,E′ ∈ E. Let ϕ : H0(F )→ H0(G) be a natural isomorphism. Then,
there exists an isomorphism ϕ : F → G in H0(RHom(E,B)) such that H0(ϕ) = ϕ.

In particular, set A = perdg(E); if F,G : A→ B are quasi-functors satisfying (5.2.2),
then H0(F ) ∼= H0(G) implies F ∼= G in H0(RHom(A,B)).

Proof. Since H0(F ) ∼= H0(G) and B is triangulated, then (5.2.1) holds. Then, the proof
is a direct application of Proposition 5.2.3, Proposition 3.6.7. The second part of the
statement follows from Lemma 3.6.5.

Upon identifying RHom(E,B) to Fun∞(E,B), Proposition 5.2.3 is translated to the
following:

Proposition 5.2.5. Let E be a k-linear category, viewed as a dg-category concentrated in
degree 0, and let B be a dg-category. Let F,G : E→ B be (strictly unital) A∞-functors,
satisfying

Hj(B(F 0(E), G0(E′))) = 0, (5.2.3)

for all j < 0, for all E,E′ ∈ E. Assume ϕ : H0(F )→ H0(G) is a natural transformation.
Then, there exists an A∞-natural transformation ϕ : F → G, such that H0(ϕ) = ϕ.

Proof. In view of Lemma 5.1.7, we try to define recursively a A∞-functor ϕ : E→ Mor B
such that Sϕ = F, Tϕ = G, and the induced functor

E = H0(E)→ Mor(H0(B))

is equal to ϕ. First, we define a map ϕ0 on objects: for any E ∈ E, we set

ϕ0(E) = (F 0(E), G0(E), ϕE),



5.2. UNIQUENESS OF DG-LIFTS 109

where ϕE is a chosen lift of the given map ϕE : F 0(E)→ G0(E). Next, we define ϕ1 on
a given basis (including the identities of all objects) of the space of morphisms. Given
an element f : E0 → E1 of this basis, we set

ϕ1(f) = (F 1(f), G1(f), h1(f)),

where h1(f) is a chosen degree −1 morphism such that

−µ1
B(h1(f)) = µ2

B(G1(f), ϕE0)− µ2
B(ϕE1 , F

1(f)).

h1(f) exists by the hypothesis that ϕ : H0(F ) → H0(G) is a natural transformation.
Moreover, we may choose h1(1E) = 0 for all E ∈ E. By construction, ϕ1(f) is a closed
degree 0 morphism in Q = Mor B (see Example 5.1.4), as required by (5.1.9), and
ϕ1(1E) = 1ϕ0(E).

Now, for d ≥ 2, assume that we have defined a sequence of maps (ϕ1, . . . , ϕd−1)
satisfying (5.1.9) and strict unitality, with

ϕk(fk, . . . , f1) = (F k(fk, . . . , f1), Gk(fk, . . . , f1), hk(fk, . . . , f1)).

Given maps fi : Ei−1 → Ei in our chosen basis for i = 1, . . . , d, by Lemma 5.2.1 the
expression

d−2∑
n=0

(−1)znϕd−1(fd, . . . fn+3, µ
2
E(fn+2, fn+1), fn, . . . , f1)

−
d−1∑
j=1

µ2
Q(ϕj(fd, . . . , fd−j+1), ϕd−j(fd−j , . . . , f1))

(5.2.4)

is a µ1
Q-cocycle (F 0(E0), G0(E0), ϕE0)→ (F 0(Ed), G0(Ed), ϕEd), of degree 1− (d− 1) =

2− d. Since F and G are A∞-functors, we have that

(5.2.4) = (µ1
B(F d(fd, . . . , f1), µ1

B(Gd(fd, . . . , f1), · · · ).

Then, the condition (5.2.3) allows us to apply Lemma 5.2.2 (with n = 2− d). We may
choose hd(fd, . . . f1) such that

(5.2.4) = µ1
Q(F d(fd, . . . , f1), Gd(fd, . . . , f1), hd(fd, . . . , f1)).

So, defining

ϕd(fd, . . . , f1) = (F d(fd, . . . , f1), Gd(fd, . . . , f1), hd(fd, . . . , f1))

we get the correct identity (5.1.9). Notice that, if one of the fi is an identity morphism,
then expression (5.2.4) vanishes, so in that case we may choose hd(fd, . . . , f1) = 0, and
hence ϕd(fd, . . . , f1) = 0, which is the strict unitality condition. Finally, our result
follows by recursion.
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5.3 Applications
In this section we describe an application of the above technique which gives uniqueness
results of Fourier-Mukai kernels. The dg-categories of interest in these applications are
enhancements of Verdier quotients of the form D(A)/L, where A is a k-linear category
and L is a full subcategory of D(A) with suitable hypotheses. More precisely, we will
work in the framework of the following result, whose proof is essentially contained in
[LO10, Section 6, first part].

Lemma 5.3.1. Let A be a k-linear category, viewed as a dg-category. Let L ⊆ D(A) be
a localising subcategory (namely, strictly full and closed under direct sums), generated
by compact objects Lc = L ∩ D(A)c. There is a canonical functor

ι : A ↪→ D(A)c → D(A)c/Lc ↪→ (D(A)/L)c, (5.3.1)

where the composition of the last two maps is the restriction of the quotient functor
D(A) → D(A)/L. The triangulated category (D(A)/L)c is the idempotent completion
of D(A)c/Lc, and it is classically generated by the full subcategory with objects ι(A).
Moreover, if D together with the equivalence

ε : (D(A)/L)c → H0(D)

is an enhancement of (D(A)/L)c, then D is quasi-equivalent to perdg(A′), where A′ is
the full dg-subcategory of D whose object are given by ε(ι(A)).

Verdier quotients such as D(A)c/Lc are enhanced by the Drinfeld dg-quotient. We
state its definition and main properties, which we will need in the following; they are
directly taken from [Dri04, 1.6.2].

Definition 5.3.2. Let A be a dg-category, and let B be a full dg-subcategory of A. A
dg-quotient of A modulo B is a dg-category A/B together with a quasi-functor π : A→
A/B, such that for any dg-category C the induced functor

π∗ : H0(RHom(A/B,C))→ H0(RHom(A,C)) (5.3.2)

is fully faithful, and its essential image consists of quasi-functors F : A → C such that
H0(F ) maps objects of B to zero objects in H0(C).

Theorem 5.3.3. Let A be a dg-category, and let B be a full dg-subcategory of A.
Then, a dg-quotient (A/B, π) exists, and it is uniquely determined up to natural quasi-
equivalence. Moreover, if A is pretriangulated and H0(B) is a triangulated subcategory
of H0(A), then (H0(A/B), H0(π)) is a Verdier quotient of H0(A) modulo H0(B):

H0(A)/H0(B) ∼−→ H0(A/B). (5.3.3)

Remark 5.3.4. Assume the framework of Lemma 5.3.1. We know that the category D(A)c
has perdg(A) as a dg-enhancement. Moreover, taking Lc to be the full dg-subcategory of
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perdg(A) whose objects correspond to Lc, we find out that the dg-quotient perdg(A)/Lc
is an enhancement of D(A)c/Lc. Moreover, since (D(A)/L)c can be viewed as the idem-
potent completion of D(A)c/Lc, we find out that the dg-category

perdg(perdg(A)/Lc)

is an enhancement of (D(A)/L)c. Without loss of generality, we may assume that the
above functor ι is obtained in H0 by the quasi-functor

ι̃ : A ↪→ perdg(A) π−→ perdg(A)/Lc ↪→ perdg(perdg(A)/Lc). (5.3.4)

Notice that the quasi-functor perdg(A) π−→ perdg(A)/Lc is the canonical projection to the
dg-quotient, and the fully faithful dg-functor perdg(A)/Lc ↪→ perdg(perdg(A)/Lc) is the
canonical inclusion. They are respectively involved with the universal properties (5.3.2)
and (3.5.5).

Now, [LO10, Theorem 2.8] tells us that, under the vanishing hypothesis

(D(A)/L)(ι(A), ι(A′)[j]) ∼= 0, ∀ j < 0, ∀A,A′ ∈ A, (5.3.5)

the category (D(A)/L)c admits a unique dg-enhancement (up to quasi-equivalence). So,
in that case, we are allowed to identify any such enhancement D, up to quasi-equivalence,
to the dg-category perdg(perdg(A)/Lc).

Now, the abstract result of the previous section allows us to prove the following:

Theorem 5.3.5. Assume the framework of Lemma 5.3.1, and assume that (D(A)/L)c
has a unique enhancement. Let D be such an enhancement, and for simplicity identify
H0(D) = (D(A)/L)c. Let F,G : D→ B be quasi-functors taking values in a triangulated
dg-category B, both satisfying the vanishing hypothesis:

H0(B)(F (ι(A)), F (ι(A′))[j]) ∼= 0, ∀ j < 0, (5.3.6)

for all A,A′ ∈ A. Then, if

H0(F ) ◦ ι ∼= H0(G) ◦ ι : A→ B,

we have that F ∼= G as quasi-functors.

Proof. Recalling Remark 5.3.4, we are allowed to identify D to perdg(perdg(A)/Lc).
By the universal property of perdg(perdg(A)/Lc), we have that F ∼= G if and only if
F|perdg(A)/Lc ∼= G|perdg(A)/Lc . Then, by the universal property of the dg-quotient, this is
equivalent to

F|perdg(A)/Lc ◦ π ∼= G|perdg(A)/Lc ◦ π : perdg(A)→ B.

Finally, by the universal property of perdg(A), this is equivalent to

F ◦ ι̃ ∼= G ◦ ι̃ : A→ B.

Now, recalling that we have identified ι = H0(ι̃), a direct application of Theorem 5.2.4
gives the desired result.
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The above result has an interesting application. Let X be a quasi-projective scheme,
viewed as open subscheme of a projective scheme X. Then, the derived category
D(QCoh(X)) of quasi-coherent sheaves on X can be described as a quotient D(A)/L.
Namely, take A as the category with objects given by the integers, and

A(i, j) = H0(X,OX(j − i)), (5.3.7)

with composition induced by that of the graded algebra ⊕nH
0(X,OX(n)). The sub-

category L is taken to be the category of all objects in D(A) whose cohomologies are
“I-torsion modules” (for details, see [LO10, before Corollary 7.8]). It can be proved that
there is an equivalence D(A)/L ∼= D(QCoh(X)), and also that the natural functor

A ↪→ D(A)→ D(A)/L ∼−→ D(QCoh(X))

maps any integer j ∈ ObA to the sheaf OX(j). Moreover, the subcategory L satisfies the
hypotheses of Lemma 5.3.1, and in particular the above discussion restricts to compact
objects and perfect complexes. Namely, we have an equivalence (D(A)/L)c ∼= Perf(X)
which, composed with the functor (5.3.1), gives:

A ι−→ (D(A)/L)c ∼−→ Perf(X),
j 7→ OX(j).

(5.3.8)

Now, let Ddg(QCoh(X)) be an enhancement of D(QCoh(X)), and for simplicity iden-
tify this category to H0(Ddg(QCoh(X))). Recall that the full dg-subcategory Perfdg(X)
of Ddg(QCoh(X)) whose objects are the compact objects in D(QCoh(X)) is an en-
hancement of Perf(X); also, recall that these enhancements are uniquely determined,
by [LO10, Corollary 7.8, Theorem 7.9]. Upon identifying (D(A)/L)c to Perf(X) via the
equivalence discussed above, we immediately get the following:

Corollary 5.3.6. Let X be a quasi-projective scheme, and let B be a triangulated dg-
category. Let F,G : Perfdg(X)→ B be quasi-functors which satisfy the vanishing condi-
tion

H0(B)(F (OX(n)), F (OX(m))[j]) = 0, ∀ j < 0,

for all n,m ∈ Z. Then, if H0(F ) ∼= H0(G), we have that F ∼= G as quasi-functors.

Finally, we apply this machinery to the uniqueness problem of Fourier-Mukai kernels,
as explained in Section 0.2, hence obtaining the following uniqueness result:

Theorem 5.3.7. Let X and Y be schemes satisfying the hypotheses of both Theorems
0.2.2 and 0.2.1, with X quasi-projective. Let E , E ′ ∈ D(QCoh(X × Y )) be such that

ΦX→Y
E

∼= ΦX→Y
E ′

∼= F : Perf(X)→ D(QCoh(Y )),

and Hom(F (OX(n)), F (OX(m))[j]) = 0 for all j < 0, for all n,m ∈ Z. Then E ∼= E ′.
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