PERFECT COMPLEXES OF TWISTED SHEAVES AND DG-ENHANCEMENTS

FRANCESCO GENOVESE (UNIVERSITEIT ANTWERPEN)

JOINT WORK (IN PROGRESS) WITH RICCARDO MOSCHETTI AND GIORGIO SCATTAREGGIA

Francesco.Genovese@uantwerpen.be

TWISTED SHEAVES...

- In algebraic geometry one encounters problems which can be solved *locally*, but those local solutions *don't glue nicely*. One can try to understand the (co-homological) obstruction to that failure of gluing. This leads to the notion of *twisted sheaf*. A reference here is [1].
- Let X be a scheme, and let $\alpha \in H^2_{\text{ét}}(X, \mathfrak{O}_X^*)$. We choose an étale covering $\mathfrak{U} = \{U_i \to X\}$ such that α can be represented by a Čech 2-cocycle $(a_{ijk})_{i,j,k}$ on \mathfrak{U} . An α -twisted sheaf $\mathfrak{F} = (\mathfrak{F}_i, \varphi_{ij})$ is then given by the following data:
 - For all $i \in I$, a sheaf \mathcal{F}_i of \mathcal{O}_{U_i} -modules.
 - Isomorphisms $\varphi_{ij} \colon \mathfrak{F}_j|_{U_{ij}} \xrightarrow{\sim} \mathfrak{F}_i|_{U_{ij}}$ satisfying twisted cocycle conditions:

 $\varphi_{ii} = 1, \, \varphi_{ji} = \varphi_{ij}^{-1}, \, \varphi_{ik}|_{U_{ijk}} = a_{ijk}(\varphi_{ij} \circ \varphi_{jk})|_{U_{ijk}}.$

The definition can be seen to be independent of the choice of the representative of α and the covering $\mathfrak U.$

• More generally, let *X* be a DM-stack, and let $\alpha \in H^2(X_{\text{ét}}, \mathcal{O}_X^*)$. Let $U_0 \to X$ be an étale atlas, and set: $U_1 = U_0 \times_X U_0$, $U_2 = U_0 \times_X U_0 \times_X U_0$, with natural

... AND THEIR (DERIVED) CATEGORIES

• We denote by $Mod(X, \alpha)$ the abelian category of α -twisted sheaves. Every definition for ordinary sheaves which is "local" can be extended to α -twisted sheaves. For example, a sheaf $\mathcal{F} \in Mod(X, \alpha)$ is *quasi-coherent* if the underlying sheaf \mathcal{F}_0 of \mathcal{O}_{U_0} -modules is quasi-coherent. Given $\mathcal{F} \in Mod(X, \alpha)$ and $\mathcal{G} \in Mod(X, \beta)$, we may define in this manner the tensor product and the sheaf hom:

$$\mathfrak{F} \otimes_{\mathfrak{O}_X} \mathfrak{G} \in \mathrm{Mod}(X, \alpha\beta), \quad \mathcal{H}om(\mathfrak{F}, \mathfrak{G}) \in \mathrm{Mod}(X, \alpha^{-1}\beta),$$

and also "twisted" pushforward and pullback functors.

- We denote by $\mathfrak{D}(X, \alpha)$ the derived category of $Mod(X, \alpha)$, namely the localization of the homotopy category of complexes $\mathfrak{K}(X, \alpha)$ along quasiisomorphisms. We also denote by $\mathfrak{D}_{qc}(X, \alpha)$ its full subcategory of complexes with quasi-coherent cohomology.
- A complex 𝔅[●] ∈ 𝔅(𝑋, α) is *K*-injective if 𝔅(𝑋, α)(𝔅[●], 𝔅[●]) = 0 for any acyclic complex 𝔅[●] ∈ 𝔅(𝑋, α). It is *K*-flat if 𝔅[●] ⊗_{𝔅𝔅} 𝔅[●] is acyclic for any acyclic complex 𝔅[●] ∈ 𝔅(𝑋, β), for any β ∈ H²(𝔅_{ét}, 𝔅^{*}_𝔅).

Lemma. Every complex \mathfrak{F}^{\bullet} has a K-injective resolution $\mathfrak{F}^{\bullet} \to R(\mathfrak{F}^{\bullet})$ and a K-flat

projections $p_0, p_1: U_1 \to U_0$ and $p_{01}, p_{12}, p_{02}: U_2 \to U_1$. We choose a cocycle $a \in \Gamma(U_2, \mathcal{O}^*_{U_2})$ which represents α . An α -twisted sheaf \mathcal{F} is then given by the following data:

- A sheaf \mathcal{F}_0 of \mathcal{O}_{U_0} -modules.
- A gluing datum $\varphi \colon p_0^* \mathcal{F}_0 \xrightarrow{\sim} p_1^* \mathcal{F}_0$ satisfing a twisted cocycle condition:

 $p_{02}^*\varphi = a(p_{12}^*\varphi \circ p_{01}^*\varphi).$

PERFECT COMPLEXES AND COMPACT OBJECTS

- Following [3], a complex 𝓕[●] ∈ 𝔅_{qc}(𝑋) is *perfect* if for any commutative ring *R* and any smooth morphism *f*: Spec(𝑘) → 𝑋, the complex of *R*-modules ℝΓ(Spec(𝑘), 𝔅*f*^{*}(𝑘[●])) is perfect. We denote by Perf(𝑋) ⊆ 𝔅_{qc}(𝑋) the full subcategory of perfect complexes.
- A complex of α -twisted sheaves $\mathcal{F}^{\bullet} \in \mathfrak{D}_{qc}(X, \alpha)$ is *perfect* if, given an étale atlas $p: U_0 \to X$ where α is represented, we have $\mathbb{L}p^*(\mathcal{F}^{\bullet}) \in \operatorname{Perf}(U_0)$.

resolution $Q(\mathcal{F}^{\bullet}) \to \mathcal{F}^{\bullet}$.

Thanks to K-injective and K-flat resolutions, we can define derived functors just as in the untwisted setting, for instance:

$$\mathcal{F}^{\bullet} \otimes_{\mathcal{O}_{X}}^{\mathbb{L}} \mathcal{G}^{\bullet} = Q(\mathcal{F}^{\bullet}) \otimes_{\mathcal{O}_{X}} \mathcal{G}^{\bullet},$$
$$\mathbb{R}\mathcal{H}om(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}) = \mathcal{H}om(\mathcal{F}^{\bullet}, R(\mathcal{G}^{\bullet})).$$

- A complex $\mathfrak{F}^{\bullet} \in \mathfrak{D}_{qc}(X, \alpha)$ is *compact* if for any family of objects $(\mathcal{E}_{k}^{\bullet})_{k}$ in $\mathfrak{D}_{qc}(X, \alpha)$, the natural morphism $\bigoplus_{k} \operatorname{Hom}(\mathfrak{F}^{\bullet}, \mathcal{E}_{k}^{\bullet}) \to \operatorname{Hom}(\mathfrak{F}^{\bullet}, \bigoplus_{k} \mathcal{E}_{k}^{\bullet})$ is an isomorphism.
- It is known [3] that if X is *concentrated*, i.e. quasi-compact, quasi-separated and such that \mathcal{O}_X is a compact object, then perfect complexes and compact objects coincide: $Perf(X) = \mathfrak{D}_{qc}(X)^c$.

Theorem. Let X be a concentrated DM-stack, and let $\alpha \in H^2(X_{\acute{et}}, \mathfrak{O}^*_X)$. Then, the perfect complexes of α -twisted sheaves are the compact objects of $\mathfrak{D}_{qc}(X, \alpha)$:

$$\operatorname{Perf}(X,\alpha) = \mathfrak{D}_{\operatorname{qc}}(X,\alpha)^c$$

Idea of proof. Assuming that \mathcal{P}^{\bullet} is perfect, we may prove that it is *dualizable*, namely there is a natural isomorphism $\mathbb{RHom}(\mathcal{P}^{\bullet}, \mathcal{O}_X) \otimes_{\mathcal{O}_X}^{\mathbb{L}} \mathcal{F}^{\bullet} \cong \mathbb{RHom}(\mathcal{P}^{\bullet}, \mathcal{F}^{\bullet})$. From this, using that \mathcal{O}_X is compact, we conclude that \mathcal{P}^{\bullet} is compact.

On the other hand, if \mathcal{P}^{\bullet} is compact we can show that it is *locally compact*, namely it is compact if restricted to the chosen étale atlas $U_0 \rightarrow X$. We are now in the untwisted setting, and we may conclude that \mathcal{P}^{\bullet} is perfect.

DG-ENHANCEMENTS

- A *dg-enhancement* of a triangulated category T is a pretriangulated dg-category A such that H⁰(A) ≅ T. The typical question one asks is: does a given T have a dg-enhancement? Is this enhancement *unique*, in the sense that given dg-enhancements A and A', they are quasi-equivalent as dg-categories?
- Every object of A is a Noetherian object in G.
- If $f: A \to A'$ is an epimorphism of \mathcal{G} with $A, A' \in \mathcal{A}$, then ker $f \in \mathcal{A}$.
- For every $A \in \mathcal{A}$ there exists N(A) > 0 such that $\mathfrak{D}(\mathfrak{G})(A, A'[N(A)]) = 0$
- If G is a Grothendieck abelian category, then D(G) has a unique enhancement [2, Theorem A].
- Furthermore [2, Theorem B], assume that \mathcal{G} has a small set \mathcal{A} of generators such that:
 - \mathcal{A} is closed under finite coproducts.

for every $A' \in \mathcal{A}$.

Then, the subcategory of compact objects $\mathfrak{D}(\mathfrak{G})^c$ has a unique enhancement.

• In particular [2, Proposition 6.10], if X is a Noetherian concentrated algebraic stack with quasi-finite affine diagonal and such that QCoh(X) is generated by a set contained in $Coh(X) \cap Perf(X)$, then Perf(X) has a unique dg-enhancement.

Theorem (Under construction!). Let X be a Noetherian concentrated DM-stack with quasi-finite affine diagonal and such that QCoh(X) is generated by a set contained in $Coh(X) \cap Perf(X)$. Moreover, let $\alpha \in H^2(X_{\acute{e}t}, \mathcal{O}_X^*)$ and assume that there exists a locally free α -twisted sheaf of finite rank. Then, $Perf(X, \alpha)$ has a unique dg-enhancement.

Idea of proof. From the assumptions on *X*, we deduce that $\mathfrak{D}_{qc}(X, \alpha) = \mathfrak{D}(\operatorname{QCoh}(X, \alpha))$. We can now apply [2, Theorem B], recalling that perfect complexes of twisted sheaves coincide with the compact objects.

ESSENTIAL BIBLIOGRAPHY

- [1] Andrei Horia Caldararu, *Derived categories of twisted sheaves on Calabi-Yau manifolds*, ProQuest LLC, Ann Arbor, MI, 2000, Thesis (Ph.D.)–Cornell University.
- [2] Alberto Canonaco and Paolo Stellari, Uniqueness of dg enhancements for the derived cate-

gory of a Grothendieck category, J. Eur. Math. Soc. (JEMS) **20** (2018), no. 11, 2607–2641.

[3] Jack Hall and David Rydh, *Perfect complexes on algebraic stacks*, Compos. Math. **153** (2017), no. 11, 2318–2367.