A DERIVED GABRIEL-POPESCU THEOREM FOR T-STRUCTURES VIA DERIVED INJECTIVES

FRANCESCO GENOVESE (UNIVERZITA KARLOVA), JULIA RAMOS GONZÁLEZ (UCLOUVAIN)

T-STRUCTURES

We fix an *enhanced triangulated category* T. More precisely, we think of T as $H^0(A)$ for a fixed pretriangulated dg-category A, which is called a *dg-enhancement* – other choices of enhancements are possible (stable ∞ -categories, stable derivators).

A *t-structure*, in some sense, is a "triangulated version" of a torsion theory:

Definition. A *t-structure* on T is a pair of full subcategories $(T_{<0}, T_{>1})$ such that:

- Hom_{\mathcal{T}}($\mathcal{T}_{\leq 0}, \mathcal{T}_{\geq 1}$) = 0.
- $\mathcal{T}_{\leq 0}$ and $\mathcal{T}_{\geq 1}$ are closed under extensions and direct summands.
- $\mathcal{T}_{\leq 0}[1] \subseteq \mathcal{T}_{\leq 0}$ and $\mathcal{T}_{\geq 1}[-1] \subseteq \mathcal{T}_{\geq 1}$.

• For all $A \in \mathcal{T}$ and for all $n \in \mathbb{Z}$, there is a (functorial) distinguished triangle

$$\tau_{\leq n} A \to A \to \tau_{\geq n+1} A \to (\tau_{\leq n} A)[1],$$

with
$$\tau_{\leq n} A \in \mathfrak{T}_{\leq n} = \mathfrak{T}_{\leq 0}[-n]$$
 and $\tau_{\geq n+1} A \in \mathfrak{T}_{\geq n+1} = \mathfrak{T}_{\geq 1}[-n]$.

• $\tau_{\leq n}(-)$ and $\tau_{\geq n+1}(-)$ are called (*left or right*) *truncations*. They yield functors:

$$\tau_{\leq n} \colon \mathfrak{T} \to \mathfrak{T}_{\leq n}, \qquad \tau_{\geq n+1} \colon \mathfrak{T} \to \mathfrak{T}_{\geq n+1}.$$

• We define

$$\mathfrak{T}^\heartsuit = \mathfrak{T}_{\leq 0} \cap \mathfrak{T}_{\geq 0}.$$

This is called the *heart* of the t-structure, and it is an abelian category.

• We define

$$H^0_t = \tau_{\leq 0} \tau_{\geq 0} \colon \mathfrak{T} \to \mathfrak{T}^{\heartsuit}, \qquad H^n_t(-) = H^0(-[n]).$$

The functor H_t^0 is cohomological.

We say that the given t-structure is *non-degenerate* if $A \cong 0$ is equivalent to

$H_t^n(A) \cong 0$ for all $n \in \mathbb{Z}$.

DERIVED INJECTIVE OBJECTS

We fix an enhanced triangulated category \mathcal{T} with a t-structure $(\mathcal{T}_{<0}, \mathcal{T}_{>1})$.

Principle. Enhanced triangulated categories *with t-structures* allow us to generalize many results and constructions of abelian categories to the derived framework.

Definition. An object $I \in \mathcal{T}$ is *derived injective* if $I \in \mathcal{T}_{>0}$, and for any $Z \in \mathcal{T}_{>0}$ we have:

 $\operatorname{Ext}_{\tau}^{1}(Z, I) = \operatorname{Hom}_{\mathfrak{T}}(Z[-1], I) = 0.$

- If *I* is derived injective, then $H^0_t(I)$ is an injective object in $\mathfrak{T}^{\heartsuit}$.
- For all $X \in \mathcal{T}$, the H_t^0 functor induces an isomorphism:

 $\mathfrak{T}(X,I) \xrightarrow{\sim} \mathfrak{T}^{\heartsuit}(H^0_t(X),H^0_t(I)).$

- We say that T has enough derived injectives if for any object $A \in T_{>0}$ there is a morphism $A \rightarrow I$ with I derived injective, such that the induced morphism $H^0_t(A) \to H^0_t(I)$ is a monomorphism in $\mathfrak{T}^{\heartsuit}$.
- If T has nice properties (in particular, it has enough derived injectives and it is non-degenerate), its "left bounded part" \mathcal{T}^+ can be completely recovered by suitable derived injective resolutions.

An example of this is the classical equivalence

 $\mathsf{K}^+(\mathrm{Inj}(\mathfrak{A})) \cong \mathsf{D}^+(\mathfrak{A}),$

if \mathfrak{A} is an abelian category with enough injectives.

THE DERIVED GABRIEL-POPESCU THEOREM

The (classical) Gabriel-Popescu theorem exhibits any Grothendieck abelian category as a localization of the category of modules over a suitable ring. We generalize this to a derived Gabriel-Popescu theorem, which exhibits any enhanced triangulated category with a "Grothendieck-like" t-structure as a localization (in the sense of t-structures) of the derived category of a suitable dg-algebra.

Setup. We let T be an enhanced triangulated category endowed with a non-degenerate t-structure with suitable properties making it "Grothendieck-like". In particular:

- \mathcal{T} is cocomplete, namely, it has arbitrary (small) direct sums. Moreover, the cohomological functor $H_t^0(-)$ preserves direct sums.
- \mathcal{T} has a generator $U \in \mathcal{T}_{\leq 0}$, such that for any object $A \in \mathcal{T}_{\leq 0}$ there is a morphism $U^{\oplus I} \to A$ such that the induced morphism $H^0_t(U)^{\oplus I} \to H^0_t(A)$ is an epimorphism in $\mathfrak{T}^{\heartsuit}$.
- We set $R = \tau_{<0} \operatorname{RHom}_{\mathfrak{T}}(U, U)$. By $\operatorname{RHom}_{\mathfrak{T}}(U, U)$ we denote the dg-algebra of endomorphisms $U \to U$ in our choice of dg-enhancement of \mathfrak{T} , and $\tau_{\leq 0}$ is the smart truncation.

- The derived category D(R) has a natural non-degenerate t-structure with heart $Mod(H^0(R))$. The truncation functors are the usual "smart" truncations of dgmodules. It is important here that *R* is concentrated in nonpositive degrees.
- T has enough derived injectives and the heart T^{\heartsuit} has exact filtered colimits. In particular, T^{\heartsuit} is a Grothendieck abelian category.

Theorem ([1]). Let T be an enhanced triangulated category endowed with a t-structure as in the above setup. The functor

 $G: \mathfrak{T} \to \mathsf{D}(R), \qquad A \mapsto \operatorname{RHom}_{\mathfrak{T}}(U, A).$

is fully faithful and has a t-exact left adjoint $F: \mathsf{D}(R) \to \mathfrak{A}$. "t-exact" means that $F(\mathsf{D}(R)_{\leq 0}) \subseteq \mathfrak{T}_{\leq 0}$ and $F(\mathsf{D}(R)_{\geq 1}) \subseteq \mathfrak{T}_{\geq 1}$

Idea of proof. We generalize the "quick proof" by Mitchell [2] of the classical Gabriel-Popescu theorem. In particular, we can prove t-exactness of F by checking that G preserves derived injective objects.

ESSENTIAL BIBLIOGRAPHY

[1] Francesco Genovese and Julia Ramos González, A Derived Gabriel–Popescu Theorem for t-Structures via Derived Injectives, International Mathematics Research Notices (2022), rnab367.

[2] Barry Mitchell, A quick proof of the Gabriel-Popesco theorem, J. Pure Appl. Algebra 20 (1981), no. 3, 313–315.