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Abstract. We prove a derived version of the Gabriel-Popescu theorem in the framework of
dg-categories and t-structures. This exhibits any pretriangulated dg-category with a suitable t-
structure (such that its heart is a Grothendieck abelian category) as a t-exact localization of a
derived dg-category of dg-modules. We give an original proof based on a generalization of
Mitchell’s argument in A quick proof of the Gabriel-Popesco theorem and involving derived in-
jective objects. As an application, we provide a short proof of the fact that derived categories of
Grothendieck abelian categories have a unique dg-enhancement.
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1. Introduction

Grothendieck categories appear naturally in many algebraic and geometric contexts. For
instance, they play an essential role in noncommutative algebraic geometry: inspired by the
Gabriel-Rosenberg reconstruction theorem [16] [37] [9], Grothendieck categories are interpreted
as (the categorial counterpart of) noncommutative spaces. The Gabriel-Popescu theorem [34]
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characterizes Grothendieck abelian categories as the localizations of the module categories.
More concretely, we can recover any Grothendieck category G as a localizing subcategory of
Mod(a), where a is a small full subcategory of G generating G. As a consequence of this the-
orem, working with Grothendieck categories gets reduced to working with concrete categories
fully determined by small data, namely, a set of generators.

Moreover, the Gabriel-Popescu theorem draws a strong link between Grothendieck categories
and Grothendieck topoi. Indeed, as observed in [26], the Gabriel-Popescu theorem is nothing
but the linear counterpart of Giraud’s theorem [19]; therefore, we can interpret Grothendieck
categories as a linear version of Grothendieck topoi. More concretely, we can envision them as
categories of sheaves on linear Grothendieck sites (see [27], [8]), and make use, after suitable
linearization, of the classical machinery available for sheaf topoi.

Triangulated categories also appear naturally in several algebraic and geometric contexts,
with derived categories of abelian categories as a prime example. If abelian categories are to
be noncommutative spaces, then derived categories (and more general triangulated categories)
seem to be candidates for derived noncommutative spaces. In this setting, Porta proved in [35]
a triangulated version of the Gabriel-Popescu theorem which identifies well generated algebraic
triangulated categories as the triangulated “Grothendieck” counterparts. In particular, the role of
the categories of modules is now played by the derived categories of small dg-categories.

It is well-known that triangulated categories are, however, not well-behaved enough in order
to perform many relevant constructions (see, for example, [41, §1.1]). This can be overcome
by the introduction of suitable higher-categorical enhancements, such as the aforementioned dg-
categories, A∞-categories or ∞-categories. In this paper we aim to explore a suitable version
of the Gabriel-Popescu theorem in an enhanced framework. We shall use pretriangulated dg-
categories (cf. [7]) as our enhancements: they are indeed the most natural enhancements for
derived categories and other triangulated categories of geometric interest. Moreover, they are
naturally linear over any chosen commutative ring (or even dg-ring).

We would like to think of a pretriangulated dg-category as a “derived counterpart” of an
abelian category, hence an actual derived noncommutative space, but this is only a part of the
story. Indeed, the world of triangulated categories (and their dg-models) does not seem per se
to communicate well with the “classical (abelian) world”. The missing link we need is given
by t-structures. First introduced in [6], a t-structure on a triangulated category T is essentially
the specification of an abelian subcategory T♥ (called the heart) and “cohomology functors”
Hn : T → T♥. Most triangulated categories of interest can be endowed with t-structures: a
typical example is the derived category D(A) of an abelian category A, in which case D(A)♥ � A
and the cohomology functors are the usual ones. T-structures on pretriangulated dg-categories
are simply understood as t-structures on their underlying triangulated categories.

By endowing pretriangulated dg-categories with t-structures, we are really able to generalize
results from the abelian to the derived framework. This can be seen as the actual shift from non-
commutative spaces to derived noncommutative spaces. An important example of this program
is the notion of derived injective. Derived injectives are suitable derived versions of injective
objects of abelian categories and they intrinsically depend on the presence of a t-structure. Just
as objects in abelian categories (often) have injective resolutions, objects in pretriangulated dg-
categories with t-structures (often) have “derived injective resolutions”: these are extensively
studied in [18] and they will also be a crucial ingredient of the present work.
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The main goal of our paper is to generalize the Gabriel-Popescu theorem to this derived set-
ting, where t-structures play the key role. We will need assumptions which make the given
pretriangulated dg-category “behave as a Grothendieck abelian category”; in particular, the ho-
motopy category will be well generated and the heart of the t-structure will be Grothendieck.
The prototypical example is given by the derived dg-category Ddg(u) of a dg-category u which
is concentrated in nonpositive degrees. Mirroring the classical Gabriel-Popescu theorem, we
will describe any pretriangulated dg-category with such well-behaved t-structure as a t-exact
localization of a dg-category of the form Ddg(u).

We remark that a similar endeavour has been already undertaken by Lurie [31, §C] in the
language of ∞-categories. In particular, he introduces (Grothendieck) pre-stable ∞-categories
as the key objects which generalize (Grothendieck) abelian categories and he proves an ∞-
categorical Gabriel-Popescu theorem in that language [31, Theorem C.2.1.6]; this also yields
a variant for presentable stable ∞-categories endowed with suitable t-structures [31, Corollary
C.2.1.10]. Lurie’s proofs and techniques could be quite directly translated to our language of
dg-categories (with the appropriate changes), but we take a different approach. In [32] Mitchell
gives a very concise proof of the classical Gabriel-Popescu theorem where injective objects
play a key role. We generalize that proof to our derived setup, and the aforementioned derived
injectives will be pivotal.

We would like to point out that while the classical and the triangulated Gabriel-Popescu the-
orems provide a full characterization of the respective notions of “Grothendieck categories”,
our result only shows that the chosen family of “Grothendieck categories” can be written as a
localization, but not that all localizations do necessarily belong to this family. The full charac-
terization of the t-exact localizations of dg-categories of the form Ddg(u) will be addressed in
future work.

This derived Gabriel-Popescu theorem will also be instrumental in an upcoming project
where we attempt to generalize tensor products of Grothendieck abelian categories and well
generated dg-categories (cf. [29] and [28]) to the setting of t-structures. In particular, inspired
by the abelian framework and the techniques used in [29], the definition of a suitable notion of
“t-dg-Grothendieck site” is work in progress.

Structure of the paper. In §2 we present the background and preliminary results that will be
necessary for the rest of the paper. We first provide a concise survey on the basic concepts
and results of the theory of dg-categories and quasi-functors. This is contained in §2.1. We
then review in §2.2 the definition and essential properties of t-structures. More interestingly,
we introduce the notion of t-monomorphism and t-epimophism and provide a “t-epi/t-mono”
factorization in triangulated categories with a t-structure (cf. §2.2.2) which will be essential
in the technical core of the paper. We close this preliminary section with a survey on derived
injectives, contained in §2.3. In particular, the relation between preservation of derived injectives
and t-exactness (cf. §2.3.2) will be a key tool for our purposes. While the basic material on dg-
categories and t-structures can be safely avoided by the expert reader and consulted afterwards
if necessary, the main results regarding the “t-epi/t-mono” factorizations (cf. Proposition 2.2.11)
and the relation between t-exactness and preservation of derived injectives (cf. Proposition 2.3.1)
play an important role in the rest of the paper and are worth a closer look.

As mentioned above, the main goal of this article is to provide a derived version of the
Gabriel-Popescu theorem for a family of t-dg-categories (pretriangulated dg-categories endowed
with a t-structure) capturing the essence of being “Grothendieck” in this setting (in particular,
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the assumptions guarantee that the heart of the t-structure is a Grothendieck category and the
homotopy category is well generated). We determine this family in §3.1.1 and we show that
it contains the main geometrically-relevant instances of t-dg-categories, such as the enhance-
ments of derived categories of Grothendieck categories or the dg-derived categories of small
dg-categories concentrated in nonpositive degrees, in both cases endowed with their canonical
t-structures (cf. Example 3.1.4 and Example 3.1.5). We then show that this family is subject to
a derived Gabriel-Popescu theorem, which is the main result of this paper:

Theorem (Theorem 3.2.1). Let A be a t-dg-category in our family (cf. 3.1.1). Let U denote
the full dg-subcategory of generators of the t-structure on A. Set u = τ≤0U and j : u → A the
natural morphism. Then, the quasi-functor

G : A→ Ddg(u),
A 7→ A( j(−), A)

is quasi-fully faithful and has a t-exact left adjoint quasi-functor

F : Ddg(u)→ A

such that H0(F)(u(−,U)) � U in H0(A), naturally in U ∈ H0(u).

In particular, we show that one can deduce the classical Gabriel-Popescu theorem as a direct
consequence of our main theorem (cf. Corollary 3.2.3).

The proof of the theorem is provided in §3.3. Given its complexity, we break it down in
different steps. The existence of the left adjoint and its right t-exactness can be proven more
or less directly (cf. Proposition 3.3.1, Proposition 3.3.3). Our approach to the proof of the left
t-exactness of F follows a derived version of the proof of the classical Gabriel-Popescu theorem
by Mitchell [32]. More concretely, by providing a derived version of Mitchell’s lemma (cf.
Lemma 3.3.6), we are able to show in Proposition 3.3.14 that G preserves derived injectives.
This is enough to obtain the left t-exactness by making use of our preliminary study on derived
injectives and t-exactness (cf. Proposition 2.3.1). In addition, the derived version of Mitchell’s
lemma also allows us to show the quasi-fully faithfulness of G (cf. proposition 3.3.17), which
concludes the proof.

As a direct application of our result, we provide in §3.4 an alternative proof of the uniqueness
of dg-enhancements for derived categories of Grothendieck categories.

During our initial investigations on derived injectives, we proved a Baer criterion for derived
injectives on the derived category of a dg-algebra. Although in the end this result was not
necessary for our proof, we believe it to be of independent interest and have therefore included
it in an appendix (cf. Appendix A).

Acknowledgements. The authors would like to thank Wendy Lowen and Michel Van den Bergh
for interesting discussions. The first named author also thanks Alberto Canonaco and Paolo
Stellari for interesting discussions around the application on uniqueness of dg-enhancements
(see §3.4). We are also grateful to the anonymous referees for their valuable comments and
suggestions.
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2. Dg-categories and t-structures

We fix once and for all a base commutative dg-ring k, which we also assume to be strictly
concentrated in nonpositive degrees. Unless otherwise specified our constructions are in the
k-linear context1, although we do not always say it.

We fix a Grothendieck universe U. From this point on, all categories are U-categories, small
categories are U-small categories and small limits and colimits are U-small limits and colimits.
We additionally fix two extra universes U ∈ V and V ∈ W, such that for every U-small (dg)
category its category of (dg) modules is V-small and for every V-small (dg) category its cate-
gory of (dg) modules is W-small. From this point on, we refrain ourselves to indicate when an
enlargement of the universe is required (from U to V, or from V to W), as this will be evident
from the context.

2.1. Dg-categories and quasi-functors. We shall work with k-linear dg-categories, namely,
categories enriched over dg-k-modules. Their homotopy categories (resp. graded homotopy
categories) will carry a natural H0(k)-linear (resp. H∗(k)-linear) structure. We refer to [30, §2]
for a specific account on k-linear dg-categories and some of their homotopy-theoretical features;
practically, everything works as in the case where k is an ordinary commutative ring. We also
refer to [22] for a general survey. Here, we recollect some notation and results we shall need
throughout the paper.

2.1.1. Dg-modules. We denote by dgm(k) the dg-category of k-dg-modules. Let A be a dg-
category. We define the dg-category of (right) A-dg-modules as:

dgm(A) = Funk(Aop, dgm(k)),

namely the dg-category of dg-functors Aop → dgm(k).
The derived category D(A) is defined as the Verdier quotient of H0(dgm(A)) by the acyclic

dg-modules. A dg-model of D(A) is given by the dg-category h-proj(A) of h-projective dg-
modules, namely dg-modules M ∈ dgm(A) such that dgm(A)(M,−) preserves acyclic objects.
Thus, we have an (H0(k)-linear) equivalence:

H0(h-proj(A)) � D(A)

which we will sometimes view as an identification, implicitly taking suitable h-projective reso-
lutions, that is, quasi-isomorphisms of the form

Q(M)→ M,

for M ∈ dgm(A), where Q(M) is h-projective. We also sometimes use the following notation:

Ddg(A) = h-proj(A), (2.1)

interpreting h-proj(A) as the derived dg-category of A.
Notice that for any A ∈ A, the representable dg-module A(−, A) is h-projective by the dg-

Yoneda lemma. So, the Yoneda embedding gives rise to a fully faithful dg-functor

hA : A ↪→ h-proj(A),

which in turn induces the so-called derived Yoneda embedding:

H0(A) ↪→ D(A).
1This will be the H0(k)-linear context for ordinary (and also triangulated) categories and the H∗(k)-linear context

for graded categories.
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2.1.2. Pretriangulated dg-categories. Let A be a dg-category. We denote by pretr(A) the small-
est full dg-subcategory of dgm(A) which contains all the representables A(−, A) and it is closed
under taking shifts and mapping cones. We remark that the dg-category h-proj(A) is indeed
closed under shifts and mapping cones and contains the representables, so the Yoneda embed-
ding factors as follows:

hA : A ↪→ pretr(A) ↪→ h-proj(A).
We say that A is pretriangulated if A ↪→ pretr(A) is a quasi-equivalence; we say that it is
strongly pretriangulated if A ↪→ pretr(A) is a “strict” dg-equivalence. We refer the reader to the
seminal work [7] for the essential features of the theory of pretriangulated categories.

The dg-categories dgm(A), h-proj(A) and pretr(A) are all strongly pretriangulated. In par-
ticular, if A is pretriangulated, we can replace it up to quasi-equivalence with pretr(A), which
is strongly pretriangulated. It is also worth mentioning that h-proj(A) is closed under arbitrary
(small) direct sums taken in dgm(A).

The crucial property of a pretriangulated dg-category A is that it has functorial shifts and
cones (of closed degree 0 morphisms). Hence, with the obvious choice of shifts and distin-
guished triangles, the homotopy category H0(A) becomes a triangulated category. If A is more-
over strongly pretriangulated, its functorial shifts and cones exist up to “strict” isomorphism in
A. We now describe a variant of the key property of such functorial cones, in a specific way
which will be suitable for our purposes.

Lemma 2.1.1. Let A be a strongly pretriangulated dg-category, and let

A B

A′ B′

f

u v

f ′

be a strictly commutative diagram of closed degree 0 morphisms in A. Let C( f ) and C( f ′) be the
functorial cones in A of respectively f and f ′. Then, there is a unique closed degree 0 morphism

w : C( f )→ C( f ′)

such that the following diagram (of closed degree 0 morphisms) is strictly commutative:

C( f )[−1] A B C( f )

C( f ′)[−1] A′ B′ C( f ′)

w[−1]

f

u v w

f ′

The rows of the above diagram induce distinguished triangles in H0(A).

We also record a simple result which tells that, if A is pretriangulated, “homotopy direct
sums” in A are completely understood in terms of direct sums in H0(A).

Lemma 2.1.2. Let A be a pretriangulated dg-category and let {Xi : i ∈ I} be a family of objects
in A. Assume that the direct sum

⊕
i Xi exists in H0(A). Then, it yields an isomorphism

A(
⊕

i

Xi,−)→
∏

i

A(Xi,−)

in D(Aop).
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Proof. The direct sum
⊕

i Xi comes with an isomorphism

H0(A)(
⊕

i

Xi,−)
∼
−→

∏
i

H0(A)(Xi,−) (♥)

of H0(Aop)-modules. Cohomology of dg-modules commutes with direct products, hence the
(derived) Yoneda lemma yields a lift

A(
⊕

i

Xi,−)→
∏

i

A(Xi,−) (♥∗)

of (♥), in D(Aop). On the other hand, we may identify:

Hn(A(
⊕

Xi,−)) � H0(A)(
⊕

i

Xi[−n],−) � H0(A)(
⊕

i

Xi,−[n]),

Hn(A(Xi,−)) � H0(A)(Xi[−n],−) � H0(A)(Xi,−[n]),

for all n ∈ Z. We conclude that (♥∗) is indeed an isomorphism in D(Aop). �

2.1.3. Resolutions of dg-categories. For any dg-category A, there is a dg-functor Q(A) → A

with the following properties:
• It is a quasi-equivalence, namely, it induces an equivalence of graded H∗(k)-linear cat-

egories
H∗(Q(A))

∼
−→ H∗(A).

• Q(A) is h-projective, namely, it has h-projective hom complexes. This implies that it is
also h-flat, namely, − ⊗k A(A, B) preserves acyclic k-dg-modules for all A, B ∈ Ob(A).

This can be found, for example in [15, §3.5]. Q(A) → A is called an h-projective (and hence
h-flat) resolution of A. We can use it to define a derived tensor product of dg-categories:

A
L
⊗k B = Q(A) ⊗k B � A ⊗k Q(B).

The above isomorphism is taken in the homotopy category of dg-categories Hqe(k), namely,
the localization of the category of (small) dg-categories dgCat(k) along quasi-equivalences: the
derived tensor product is well defined there up to isomorphism. For an account on Hqe(k) we
refer the reader to [40].

2.1.4. Dg-bimodules and quasi-functors. Let A and B be dg-categories. An A-B-dg-bimodule
is by definition a dg-functor

F : Bop ⊗k A→ dgm(k),

namely, an element of the dg-category dgm(B ⊗Aop). We shall often write

FB
A = F(B, A),

with the convention “contravariant-above, covariant-below”. Sometimes, we shall also denote
by A or hA or even h the diagonal bimodule of a dg-category A, namely:

hA′
A = AA′

A = A(A′, A).

Now, assume that A or B is h-flat, if necessary taking an h-flat resolution, so that

B
L
⊗k A

op = B ⊗k Aop.
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An A-B-dg-bimodule F ∈ dgm(B⊗kA
op) is called a quasi-functor if it is right quasi-representable,

namely, for any A ∈ A there is an object ΦF(A) ∈ B and a quasi-isomorphism

B(−,ΦF(A))
∼
−→ FA.

We shall denote such quasi-functor as an arrow

F : A→ B.

Moreover, F induces a graded H∗(k)-linear functor

H∗(F) : H∗(A)→ H∗(B),
A 7→ ΦF(A).

Analogously, it induces an H0(k)-linear functor

H0(F) : H0(A)→ H0(B).

We say that F is quasi-fully faithful if H∗(F) is a fully faithful graded functor. We say that it is
quasi-essentially surjective if H0(F) is essentially surjective. Finally, we say that it is a quasi-
equivalence if it is both quasi-fully faithful and quasi-essentially surjective, namely, if H∗(F) is
an equivalence of graded categories. Using the results in [17] (in particular, the derived duality
of bimodules), we can characterize quasi-equivalences as quasi-functors which admit suitable
inverse quasi-functors.

We shall denote by RHom(A,B) the full dg-subcategory of h-proj(B
L
⊗k A

op) spanned by the
(h-projective) quasi-functors. This gives the internal hom of the symmetric monoidal category

(Hqe(k),
L
⊗k) (cf. [40], [11]). Sometimes, we shall abuse notation and identify quasi-functors

with the objects of RHom(A,B), implicitly taking h-projective resolutions.

2.1.5. Adjoint quasi-functors. Let A and B be dg-categories, and let

F : A� B : G

be quasi-functors. We say that F is left adjoint to G, in symbols F a G, if the induced graded
functors

H∗(F) : H∗(A)� H∗(B) : H∗(G)
are part of an adjunction H∗(F) a H∗(G). Adjunctions of quasi-functors are reasonably well-
behaved, in the sense that the existence of an adjoint at the graded level implies that there is
actually an adjoint at the level of quasi-functors:

Lemma 2.1.3 (see also [28, Remark 3.9]). Let G : B → A be a quasi-functor. Assume that
H∗(G) : H∗(B) → H∗(A) has a left adjoint L : H∗(A) → H∗(B) as a graded functor. Then, G
has a left adjoint F as a quasi-functor. Moreover, F satisfies H∗(F) � L.

If A and B are pretriangulated dg-categories, the above claim holds if we replace H∗ with
H0 everywhere.

Proof. G : B→ A is a quasi-functor, hence for any B ∈ B we have an isomorphism

A(−,ΦG(B))
∼
−→ GB

in D(A). The mapping B 7→ ΦG(B) defines the graded functor H∗(G). For A ∈ A, we have by
assumption an isomorphism

H∗(B)(L(A),−) � H∗(A)(A,ΦG(−)) � H∗(GA) (∗)
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of graded left H∗(B)-modules. Thanks to the (graded) Yoneda lemma, this yields an element

e ∈ H0(GA
L(A)).

Then, applying the derived Yoneda lemma, we deduce that e yields an isomorphism in D(Bop),
for all A ∈ A:

B(L(A),−)
∼
−→ GA,

which induces the above (∗) when taking H∗. This means that G is left quasi-representable,
hence by [17, Proposition 7.1] we know that G has a left adjoint quasi-functor F. By construc-
tion, H∗(F) is precisely L.

The second part of the claim is immediate, since by assumption we are allowed to take shifts
of objects in A. �

2.1.6. Induction and restriction quasi-functors. Let A and B be dg-categories, and let F : A→
B be a dg-functor. Then, we have an induction dg-functor

IndF : dgm(A)→ dgm(B),

which is left adjoint to the restriction dg-functor

ResF : dgm(B)→ dgm(A),
M 7→ M ◦ F.

We refer to [15] for the definition of IndF and we recall from there some of its relevant properties:
• IndF preserves representable dg-modules, namely, there is an isomorphism in dgm(B):

IndF(A(−, A)) � B(−, F(A)),

natural in A ∈ A.
• IndF preserves h-projective modules and hence induces a dg-functor

IndF : Ddg(A)→ Ddg(B), (2.2)

recalling notation (2.1).
• If F is fully faithful, the same is true for IndF ; if F is a quasi-equivalence, the same is

true for IndF .
• If F is a dg-equivalence with inverse G, then

IndF : Ddg(A)� Ddg(B) : IndG (2.3)

are dg-equivalences, inverse to each other.
The restriction dg-functor ResF induces a restriction quasi-functor

ResF : Ddg(B)→ Ddg(A). (2.4)

It is defined as the following dg-bimodule:

(ResF)N
M = dgm(A)(N,M ◦ F),

for M ∈ h-proj(B) and N ∈ h-proj(A). Since N is h-projective, we have a quasi-isomorphism

h-proj(A)(N,Q(M ◦ F))
∼
−→ dgm(A)(N,M ◦ F) = (ResF)N

M,

natural in N, where Q(M ◦ F) → M ◦ F is an h-projective resolution. This proves that ResF is
indeed a quasi-functor h-proj(B)→ h-proj(A).
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Moreover, it is clear that there is an adjunction of quasi-functors (cf. §2.1.5):

IndF : Ddg(A)� Ddg(B) : ResF . (2.5)

2.1.7. Dg-quotients and localizations. The theory of dg-quotients was initiated by Keller in
[21] and further developed by Drinfeld in [15]. Given a dg-category A and a full dg-subcategory
A′ ⊆ A, the dg-quotient A/A′ is a dg-category satisfying the following universal property in
Hqe(k) (cf. [39]):

RHom(A/A′,B) � RHomA′(A,B)
for all B in Hqe(k), whereRHomA′(A,B) denotes the full dg-subcategory ofRHom(A,B) given
by the quasi-functors F such that H0(F) : H0(A) → H0(B) annihilates the objects of A′ (seen
as objects in H0(A)). Given A′ ⊆ A as above, the dg-quotient A/A′ does exist. We refer the
reader to [15] for an explicit construction.

In particular, the dg-quotient provides an enhancement of the Verdier quotient of triangulated
categories. More concretely, we have the following:

Theorem 2.1.4 ([15, Thm 3.4]). Given a homotopically k-flat dg-category A and a dg-subcategory
A′, we have that

H0(Apre−tr)/H0((A′)pre−tr) � H0
(
(A/A′)pre−tr

)
,

where (−)pre−tr denotes the (strongly) pretriangulated envelope [15, §2.4]. In particular, if both
A and A′ are strongly pretriangulated we have that

H0(A)/H0(A′) � H0(A/A′).

Remark 2.1.5 ([15, §3.5]). If the category A is not homotopically flat over k, one can always
take a homotopically flat resolution Ã

∼
−→ A [15, Lem B.5] and replace A′ ⊆ A by the full dg

subcategory Ã′ ⊆ Ã given by the objects whose image in A is homotopy equivalent to an object
in A′.

In the localization theory of triangulated categories, Bousfield localizations play an important
role. A Bousfield localization of a triangulated category T is an exact functor L : T → T that
can be realized as a composition

T → S→ T

where S is a replete subcategory of T, the second functor is the natural inclusion and the first
functor is the left adjoint of the second one [24, Prop. 2.6.1]. In this situation, S is actually
equivalent to the Verdier quotient T/ ker(L) and the first functor is just the canonical quotient
functor (see [24, Prop 4.9.1]). In particular, Im(L) � S � T/S.

When we restrict to the case of a well generated triangulated category T in the sense of
Neeman (cf. [33, Def 8.1.4]), Verdier quotients and Bousfield localizations are equivalent ap-
proaches to the localization theory of T. More explicitly, Bousfield localizations of T with kernel
generated by a set of objects are in bijection with localizing subcategories of T generated by a
set of objects [24, Thm 7.2.1 & Prop 5.2.1]. One direction is provided by taking the composition
of the Verdier quotient with its right adjoint (which exists because localizing subcategories are
closed under small coproducts and the fact that Brown representability holds for well generated
triangulated categories [24, Thm 5.1.1]). The other is given by taking the kernel of the local-
ization functor, which is localizing. The generation by a set has to be imposed in order for the
Verdier quotient to be well generated as well.
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Bousfield localizations, as Verdier quotients, can also be enhanced to the dg-realm (see [28,
§3.2]) as follows:

Definition 2.1.6. Let A,B be pretriangulated dg-categories and i : B→ A a quasi-fully faithful
dg functor. We say that i ∈ RHom(B,A) is a dg-Bousfield localization of A if H0(i) : H0(B) ↪→
H0(A) admits a left adjoint. In view of Lemma 2.1.3, this is equivalent to saying that i : B→ A

has a left adjoint quasi-functor G ∈ RHom(A,B).

Remark 2.1.7. Observe that a dg-Bousfield localization induces a classical Bousfield localization
of the corresponding underlying triangulated category H0(A).

Remark 2.1.8. Given a dg-Bousfield localization i : B → A with left adjoint quasi-functor
G : A→ B, one has that B is isomorphic in Hqe(k) to the dg-quotient A/ ker(H0(G)) where we
see ker(H0(G)) as a full dg-subcategory of A via the natural enhancement A of H0(A).

In parallel fashion to what happened in the triangulated framework, when we restrict ourselves
to the realm of pretriangulated well generated dg-categories (i.e. pretriangulated dg-categories
whose underlying triangulated category is well generated), there is a bijective correspondence
between localizing subcategories and Bousfield localizations [28, §3.2.3]. Namely, for a well
generated dg-category A, there is a bijection between:

• The set of localizing subcategories of H0(A) generated by a set;
• The set of dg-Bousfield localizations of A with the kernel of the left adjoint (at the

H0-level) generated by a set.

2.1.8. Truncations of dg-categories. Let A be a dg-category. We define a dg-category τ≤0A as
follows: Ob τ≤0A = ObA, and for any A, B ∈ ObA we set

(τ≤0A)(A, B) = τ≤0(A(A, B)),

where τ≤0 is the (smart) truncation of k-dg-modules. More explicitly:
(τ≤0A)(A, B)n = A(A, B)n if n < 0,
(τ≤0A)(A, B)n = 0 if n > 0,
(τ≤0A)(A, B)0 = Z0(A(A, B)).

There is a natural dg-functor
i≤0 : τ≤0A→ A,

which is the identity on objects and the inclusion map τ≤0A(A, B) ↪→ A(A, B) on hom-complexes.

2.2. t-structures on dg-categories. t-structures on dg-categories are understood as t-structures
on their homotopy categories.

Definition 2.2.1. A t-structure on a pretriangulated dg-category A is a t-structure on the homo-
topy category H0(A) (see [6]).

We shall denote by A≤n and A≥n the full dg-subcategories of A whose objects are the same
as the aisles H0(A)≤n and H0(A)≥n, so that

H0(A≤n) = H0(A)≤n,

H0(A≥n) = H0(A)≥n.

Such t-structure on A will often be denoted by the pair (A≤0,A≥0).
A pretriangulated dg-category A with a t-structure (A≤0,A≥0) will be called a t-dg-category.
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Remark 2.2.2. Let A be a t-dg-category. We shall denote by

H0
t : H0(A)→ H0(A)♥

the cohomological functor associated to the t-structure. We also set

Hn
t (−) = H0

t (−[n]).

We shall often ease the notation and write Hn instead of Hn
t .

Definition 2.2.3. Let F : A → B be a quasi-functor between t-dg-categories. We say that F is
left t-exact (resp. right t-exact) if H0(F) has this property, namely, it maps H0(A≥0) to H0(B≥0)
(resp. it maps H0(A≤0) to H0(B≤0)).

We also say that F is t-exact if it is both left and right t-exact.

A prototypical example of t-dg-categories is given by dg-derived categories of dg-categories
concentrated in nonpositive degrees.

Proposition 2.2.4. Let a be a (k-linear) dg-category concentrated in nonpositive degrees, namely,
such that

Hi(a(A, B)) = 0, i > 0, (2.6)

for all objects A, B ∈ a. Then, the derived dg-category Ddg(a) = h-proj(a) has a t-structure such
that:

Ddg(a)≤0 = {M ∈ Ddg(a) : Hi(M) = 0 ∀ i > 0},

Ddg(a)≥0 = {M ∈ Ddg(a) : Hi(M) = 0 ∀ i < 0}.

This t-structure will be referred to as natural or canonical. As a t-dg-category, Ddg(a) will be
always endowed with this t-structure, unless otherwise specified. The heart H0(Ddg(a))♥ = D(a)♥

is identified with the abelian (H0(k)-linear) category Mod(H0(a)) of right H0(a)-modules.

Proof. This can be proved by adapting [2, Lem 2.2, Prop 2.3]. �

Remark 2.2.5. Since our base dg-ring k is by assumption (strictly) concentrated in nonposi-
tive degrees, the derived dg-category Ddg(k) has the natural t-structure described in the above
Proposition 2.2.4.

2.2.1. Exact functors and t-structures. We now temporarily forget about dg-categories and dis-
cuss a few well-known results (cf. [6, Proposition 1.3.17]) which involve only triangulated cat-
egories endowed with t-structures and triangulated functors between them. Clearly, everything
can be immediately generalized to t-dg-categories.

Proposition 2.2.6. Let T and S be (H0(k)-linear) triangulated categories endowed with t-
structures (T≤0,T≥0) and (S≤0, S≥0). Let F : T → S be a triangulated functor. There is an
induced functor

F♥ : T♥ → S♥,

A 7→ H0(F(A)).
(2.7)

This formula simplifies to τ≥0F(A) (τ≤0F(A)) is F if right (left) t-exact – in which case F♥ is a
right (left) exact functor between abelian categories.
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Proof. Let
0→ A→ B→ C → 0

be a short exact sequence in T♥. This induces a distinguished triangle in T, and hence a distin-
guished triangle

F(A)→ F(B)→ F(C).

We take the cohomological long exact sequence in S♥:

H−1(F(C))→ H0(F(A))→ H0(F(B))→ H0(F(C))→ H1(F(A)).

If F is right t-exact, then H1(F(A)) � 0; if it is left t-exact, then H−1(F(C)) � 0. From these
observations, we easily conclude. �

Proposition 2.2.7. Let T and S be triangulated categories endowed with t-structures (T≤0,T≥0)
and (S≤0, S≥0), and let F a G : T � S be an adjunction of triangulated functors. Then, F is
right t-exact if and only if G is left t-exact.

Proof. Assume that G is left t-exact, namely G(S≥0) ⊆ T≥0. Playing with shifts, we notice that
this implies that G(S≥n) ⊆ T≥n for all n ∈ Z. Now, let A ∈ T≤0. Recall that F(A) ∈ S≤0 is
equivalent to

S(F(A), B) = 0, ∀ B ∈ S>0.

Now observe that for any B ∈ S>0 we have

S(F(A), B) � T(A,G(B)) � 0,

since by hypothesis G(B) ∈ T>0. The other implication is proved in the same fashion. �

Proposition 2.2.8. Let F a G : T � S be an adjunction of triangulated functors, and assume
that F is right t-exact (equivalently, G is left t-exact). Then, there is an induced adjunction

F♥ a G♥ : T♥ � S♥. (2.8)

Proof. We may compute, for any A ∈ T♥ and B ∈ S♥:

S♥(F♥(A), B) � S♥(τ≥0F(A), B) (F is right t-exact)

� S(F(A), B) (B ∈ S♥ ⊆ S≥0)
� T(A,G(B))

� T(A, τ≤0G(B)) (A ∈ T♥ ⊆ T≤0)

� T♥(A,G♥(B)) (G is left t-exact). �

2.2.2. Epi-mono decompositions in t-structures. In abelian categories, we can always factor a
morphism as an epimorphism followed by a monomorphism. If we have a triangulated category
with a t-structure, we can generalize such factorizations even quite outside the (abelian) heart.

Definition 2.2.9. Let T be a triangulated category with a t-structure, and let f : A → B be a
morphism in T, with A ∈ T≤0. We say that f is a t-monomorphism if C( f ) ∈ T≥0. We will
sometimes write a t-monomorphism as a hooked arrow f : A ↪→ B.

Moreover, let g : A′ → B′ be a morphism in T, with both A′, B′ ∈ T≤0. We say that g is a
t-epimorphism if C(g)[−1] ∈ T≤0. We will sometimes picture a t-epimorphism as an arrow with
two heads g : A′ � B′.
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Remark 2.2.10. Using the long exact sequence in cohomology, it is easy to see that if f : A→ B
is a t-monomorphism, then H0( f ) is a monomorphism and H−n( f ) is an isomorphism for all
n ≥ 1. Analogously, we can check that if g : A′ → B′ is a t-epimorphism, then H0( f ) is an
epimorphism in T♥.

It may seem that the above Definition 2.2.9 is quite “ad hoc” and asymmetrical; indeed, it
looks like that t-monomorphisms and t-epimorphisms are not well-behaved concepts in general,
but they need some additional restrictions to work.

In the next result, we prove a “t-epi/t-mono” factorization for suitable morphisms in a tri-
angulated category with a t-structure. A dual version appears in the proof of [31, Proposition
C.5.2.8]; we give a detailed proof here, since it is one of the key ingredients of our main result.

Proposition 2.2.11. Let T be a triangulated category with a t-structure, and let f : A → B be a
morphism in T, with A ∈ T≤0. Then, f can be decomposed as

A Coim( f ) B,
p f̃

(2.9)

where Coim( f ) ∈ T≤0, p is a t-epimorphism (namely, C(p)[−1] ∈ T≤0) and f̃ is a t-monomorphism
(namely, C( f̃ ) ∈ T≥0). In particular, taking H0 (and recalling Remark 2.2.10), this decomposi-
tion induces the usual epi-mono decomposition of H0( f ) in the heart.

More specifically, if we define F as the object sitting in the distinguished triangle

F → A
f
−→ B,

there is a distinguished triangle

τ≤0F → A
p
−→ Coim( f ) (2.10)

and a morphism of distinguished triangles

τ≤0F A Coim( f ) (τ≤0F)[1]

F A B F[1],

p

f̃
f

where τ≤0F → F is the natural morphism.

Proof. In abelian categories, the coimage of f is the cokernel of its kernel. We need to reinterpret
this in the t-structure setting. Consider the distinguished triangle

F → A
f
−→ B.

The composition
j : τ≤0F → F → A

plays the role of the kernel of f . Hence, we may form the distinguished triangle:

τ≤0F
j
−→ A

p
−→ Coim( f ).

Since both τ≤0F and A lie in T≤0, the same is true for Coim( f ), and moreover we have that p is a
t-epimorphism by construction. We proceed to construct f̃ : Coim( f )→ B. Recall that we have
the natural distinguished triangle

τ≤0F → F → τ≥1F,
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and consider the following commutative diagram:

τ≤0F F τ≥1F (τ≤0F)[1]

τ≤0F A Coim( f ) (τ≤0F)[1]

B

F[1],

j p

f

where both rows and the only column are distinguished triangles. Then, by applying the oc-
tahedral axiom (see [33, Proposition 1.4.6]), we know that we can complete this diagram to a
commutative diagram

τ≤0F F τ≥1F (τ≤0F)[1]

τ≤0F A Coim( f ) (τ≤0F)[1]

0 B B 0

(τ≤0F)[1] F[1] (τ≥1F)[1] (τ≤0F)[2],

j p

f f̃

where all rows and columns are distinguished triangles and furthermore the composites

Coim( f )→ (τ≤0F)[1]→ F[1]

and

Coim( f )
f̃
−→ B→ F[1]

are equal. In particular, we have that the diagram

τ≤0F A Coim( f ) (τ≤0F)[1]

F A B F[1]

j p

f̃
f

is commutative as desired. It only remains to see that f̃ is a t-monomorphism. But observe that
as

Coim( f )
f̃
−→ B→ (τ≥1F)[1]→ Coim( f )[1]

is a distinguished triangle, we have that C( f̃ ) � (τ≥1F)[1] and therefore C( f̃ ) lies indeed in T≥0,
as we wanted to show. �

Corollary 2.2.12. In the setting of the above Proposition 2.2.11, assume moreover that B ∈ T≤0
and that f : A → B is a t-epimorphism. Then, any morphism f̃ in the decomposition (2.9) is an
isomorphism, and in particular Coim( f ) � B.
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Proof. By definition, in the proof of the above Proposition 2.2.11, we find that the object F lies
in the left aisle T≤0. Hence, τ≤0F → F is an isomorphism and the result easily follows. �

2.3. Derived injectives. T-structures allow to generalize the notion of injective object to the
derived framework. Derived injectives can be used to make resolutions of objects, just as their
“ordinary” counterparts: this is thoroughly explored in [18]. In this paper, we use them to prove
a straightforward but crucial “t-structure version” of the following well-known fact:

Proposition 2.3.1. Let G : A → B be a functor between abelian categories which admits a left
adjoint F : B → A. Assume that A has enough injectives. Then, F is exact if and only if G
preserves injective objects.

2.3.1. Basic definitions and properties. We shall discuss derived injectives and some of their
features essentially following [36, §5.1]. It is worth mentioning that analogous notions have
appeared in literature, for instance injective objects of stable ∞-categories (see [31, C.5.7]) or
Ext-injective objects (see [4]); derived injectives over non-positively graded dg-algebras, with
respect to the canonical t-structure, have been investigated in [38]. We refer to Appendix A for
a “Baer-like” characterization of derived injectives.

Definition 2.3.2. Let T be an (H0(k)-linear) triangulated category with a t-structure (T≤0,T≥0),
and let I ∈ Inj(T♥) be an injective object in the heart. The derived injective associated to I is an
object L(I) which represents the cohomological functor T♥(H0(−), I) : Top → Mod(H0(k)):

T♥(H0(−), I) � T(−, L(I)). (2.11)

Observe that if L(I) exists, it is determined up to isomorphism.
An object E ∈ T will be called derived injective if there exists an injective object I ∈ T♥ such

that E � L(I).
If for any I ∈ Inj(T♥) an object L(I) as above exists, we say that T has derived injectives.

Moreover, if T has derived injectives and the heart T♥ has enough injectives, we say that T has
enough derived injectives.

If A is a (k-linear) t-dg-category (cf. Definition 2.2.1), we shall say that A has (enough)
derived injectives if H0(A) has this property.

Proposition 2.3.3. Let T be an (H0(k)-linear) triangulated category with a t-structure (T≤0,T≥0),
and let I ∈ Inj(T♥) be an injective object in the heart. Assume that the derived injective L(I)
associated to I exists. Then:

(1) L(I) ∈ T≥0.
(2) H0(L(I)) � I.
(3) The functor H0 : T → T♥ induces an isomorphism

H0 : T(A, L(I))
∼
−→ T♥(H0(A), I),

for all A ∈ T.

Proof. To prove (1), let Z ∈ T≤−1. Then, H0(Z) � 0, so:

T(Z, L(I)) � T♥(H0(Z), I) � 0,

and we conclude that indeed L(I) ∈ T≥0.
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For (2), let B ∈ T♥. We have natural isomorphisms:

T♥(B,H0(L(I))) � T(B, τ≤0L(I)) (use point (1))
� T(B, L(I))

� T♥(B, I) (use that B ∈ T♥ and the def. of L(I)).

By the Yoneda lemma in T♥, we obtain an isomorphism H0(L(I)) � I.
For (3), we consider the following diagram:

T(A, L(I)) T♥(H0(A),H0(L(I)))

T♥(H0(A), I).

H0

(2.11)
∼

∼

The diagonal arrow of the diagram is the natural isomorphism (2.11) which defines L(I); the ver-
tical arrow is the natural isomorphism we described in the proof of point (2). A direct inspection
shows that the above diagram is commutative, and we conclude. �

Remark 2.3.4. Let E ∈ T be a derived injective, namely, there exists an injective object I ∈ T♥

such that E � L(I) (cf. Definition 2.3.2). Then, by point (2) of the above Proposition 2.3.3, we
see that I � H0(E). We conclude that I � H0(E) is an injective object uniquely determined by
E.

We can characterize derived injectives by a vanishing property – this is the actual link with
Ext-injective objects that we mentioned before.

Proposition 2.3.5. Let T be a triangulated category with a t-structure, and let E ∈ T be an
object. The following are equivalent:

(1) E is a derived injective (Definition 2.3.2).
(2) E ∈ T≥0 and for any Z ∈ T≥0 we have

T(Z[−1], E) � 0. (2.12)

Proof. The implication (1)⇒ (2) follows from the definition and from Proposition 2.3.3 (1).
Let us now prove (2) ⇒ (1). First, we check that H0(E) is an injective object in T♥. Indeed,

let
0→ A→ B→ C → 0

be a short exact sequence in T♥. This induces a distinguished triangle

A→ B→ C (∗)

in T. Moreover, since E ∈ T≥0, we have:

T♥(−,H0(E)) � T(−, τ≤0E)
� T(−, E)

(•)

as functors (T♥)op
→ Mod(H0(k)). We consider the following long exact sequence induced by

(∗):
T(A[1], E)→ T(C, E)→ T(B, E)→ T(A, E)→ T(C[−1], E).
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Since C ∈ T♥ ⊆ T≥0, we have by hypothesis that T(C[−1], E) = 0; furthermore, T(A[1], E) = 0
since A[1] ∈ T≤−1 and E ∈ T≥0. Recalling the above (•), we see that the sequence

0→ T♥(C,H0(E))→ T♥(B,H0(E))→ T♥(A,H0(E))→ 0

is exact, as we wanted.
Next, we show that E is the derived injective associated to the injective object H0(E), by

checking that the morphism

H0 : T(X, E)→ T♥(H0(X),H0(E))

is an isomorphism for all X ∈ T. Since E ∈ T≥0, we have an isomorphism

T(X, E) � T(τ≥0X, E).

Then, consider the canonical distinguished triangle

H0(X)→ τ≥0X → τ≥1X

and the induced exact sequence:

T(τ≥1X, E)→ T(τ≥0X, E)→ T(H0(X), E)→ T((τ≥1X)[−1], E).

The object τ≥1X lies in T≥1 ⊆ T≥0, and moreover we can write τ≥1X � (τ≥1X)[1][−1], and
(τ≥1X)[1] ∈ T≥0. Hence, by hypothesis, we deduce that

T(τ≥1X, E) � 0,
T((τ≥1X)[−1], E) � 0.

Hence, we have an isomorphism

T(τ≥0X, E) � T(H0(X), E).

Finally, we have an isomorphism

T(H0(X), E) � T(H0(X),H0(E)).

With a direct inspection, we now see that H0 : T(X, E) → T♥(H0(X),H0(E)) can be factored as
the chain of isomorphisms we have just described, and we conclude. �

We have an easy corollary which perhaps makes derived injectives a little more familiar.

Corollary 2.3.6. Let E be a derived injective, and let g : A → B be a t-monomorphism (Defini-
tion 2.2.9). Then, the induced morphism

g∗ : T(B, E)→ T(A, E)

is surjective. In other words, any morphism f : A→ E can be extended to a morphism f̃ : B→ E
along the t-monomorphism g : A→ B:

A B

E.

g

f
f̃

(2.13)
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Proof. We consider the distinguished triangle

A
g
−→ B→ C(g).

By assumption, C(g) ∈ T≥0, and by Proposition 2.3.5 above we know that

T(C(g)[−1], E) � 0.

We now immediately conclude by considering the exact sequence

T(B, E)
g∗
−−→ T(A, E)→ T(C(g)[−1], E). �

We now give a reasonable sufficient condition which ensures that a given triangulated category
with a t-structure has derived injectives, in the sense of Definition 2.3.2.

Proposition 2.3.7. Let T be a triangulated category with a t-structure. In addition, assume that
T is well generated [33, Def 8.1.4] (in particular, it is closed under small direct sums). Assume
moreover that the cohomological functor

H0 : T → T♥

preserves small direct sums. Then, T has derived injectives (cf. Definition 2.3.2).

Proof. Let I be an injective object in T♥. By hypothesis, the functor

T♥(H0(−), I)

is cohomological and maps small direct sums to direct products. As Brown representability
holds for well generated triangulated categories (see, for example, [23, Thm A]), we conclude
that T♥(H0(−), I) is representable, as desired. �

2.3.2. Preservation of derived injectives and t-exactness. In this part we prove the analogue of
Proposition 2.3.1 in the framework of t-structures, as promised. However, before stating it, we
need an additional hypothesis which essentially ensures that objects are uniquely determined by
their cohomologies.

Definition 2.3.8. Let T be a triangulated category with a t-structure. We say that such t-structure
is non-degenerate if one of the following equivalent conditions holds:

(1) For any object A ∈ T, we have that A � 0 if and only if Hn
t (A) � 0 for all n ∈ Z.

(2) Any morphism f : A→ B in T is an isomorphism if and only if Hn
t ( f ) : Hn

t (A)→ Hn
t (B)

is an isomorphism in T♥, for all n ∈ Z.
If A is a t-dg-category, we say that it (or its t-structure) is non-degenerate if the t-structure on

the homotopy category H0(A) is non-degenerate.

Remark 2.3.9. If T has a non-degenerated t-structure, it is straightforward to see that its aisles
T≤0 and T≥0 are completely determined by cohomologies, namely:

T≤n = {X ∈ T : Hk
t (X) = 0, ∀ k > n},

T≥n = {X ∈ T : Hk
t (X) = 0, ∀ k < n},

(2.14)

as full subcategories of T.
In this setting, we then easily deduce that f : A → B (with A ∈ T≤0) is a t-monomorphism

(Definition 2.2.9) if and only if H0
t ( f ) is a monomorphism and H−n

t ( f ) is an isomorphism for all
n ≥ 1; analogously, a morphism g : A′ → B′ (with A′, B′ ∈ T≤0) is a t-epimorphism if and only
if H0

t (g) is an epimorphism.
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Proposition 2.3.10. Let T and S be triangulated categories with t-structures, and assume that
T has a non-degenerate t-structure (Definition 2.3.8) and enough derived injectives (Definition
2.3.2). Moreover, let F a G : S � T be an adjunction of triangulated functors, such that G is
left t-exact. Then, F is t-exact if and only if G preserves derived injectives.

Proof. Since G is left t-exact, we know from Proposition 2.2.7 that F is right t-exact. Hence, it
is enough to prove that F is left t-exact if and only if G preserves derived injectives.

Assume that F is left t-exact, and let E ∈ T be a derived injective. As E ∈ T≥0 and G is left
t-exact by hypothesis, we have that G(E) ∈ S≥0. By assumption, if C ∈ S≥0 then F(C) ∈ T≥0.
Consequently, we have that

S(C[−1],G(E)) � T(F(C)[−1], E) = 0

for every C ∈ S≥0, which proves that G(E) is derived injective (cf. Proposition 2.3.5).
On the other hand, suppose that G preserves derived injectives and let C ∈ S≥0. The t-structure

on T is non-degenerate by assumption, so (recalling the above Remark 2.3.9) it is enough to show
that

H0(F(C)[−n]) = H−n(F(C)) � 0
in T♥, for all n ≥ 1. First, we observe that for every derived injective E ∈ T we have that

T(F(C)[−n], E) � S(C[−n],G(E)) = 0, (∗)

for every n ≥ 1, since C[−n] ∈ S≥1 (cf. Proposition 2.3.5). As T has enough derived injectives,
the heart T♥ has enough injectives. Consequently, there exists an injective object I in T♥ and
a monomorphism i ∈ T♥(H−n(F(C)), I), for any fixed n ≥ 1. In addition, again because T has
enough derived injectives, we have that I has an associated derived injective L(I); in particular,
there is an isomorphism:

T♥(H−n(F(C)), I) � T(F(C)[−n], L(I)).

This, taking E = L(I) in (∗) above, implies that

i ∈ T♥(H−n(F(C)), I) � T(F(C)[−n], L(I)) = 0.

As i is a monomorphism, we deduce that H−n(F(C)) = 0 (n ≥ 1), as we wanted. �

3. A derived Gabriel-Popescu theorem for t-structures

This part is devoted to the proof of the main result of the paper, namely, a derived Gabriel-
Popescu theorem for dg-categories endowed with a t-structure (also called t-dg-categories as in
Definition 2.2.1).

3.1. The setup. The classical Gabriel-Popescu theorem shows that Grothendieck abelian cat-
egories are localizations of categories of modules [34]. In [35] a triangulated Gabriel-Popescu
theorem is provided, showing that well generated algebraic triangulated categories are local-
izations of derived categories of small dg-categories. Our aim is to provide a t-dg-Gabriel-
Popescu theorem for t-dg-categories with suitable assumptions which capture the idea of “be-
ing Grothendieck in a derived sense”. In particular, the heart of such t-dg-categories will be a
Grothendieck abelian category and the homotopy category will be well generated.

Setup 3.1.1. We shall fix a k-linear t-dg-category A. We make the following assumptions:
• H0(A) is well generated. In particular, it has small direct sums.
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• The t-structure on A is non degenerate (Definition 2.3.8).
• The cohomological functor

H0
t = H0 : H0(A)→ H0(A)♥

preserves small direct sums.
• Filtered colimits are exact in H0(A)♥.
• The t-dg-category A has a small set of generators, namely, a set U of objects in A≤0,

such that for every object A ∈ A≤0 there is a t-epimorphism in H0(A) (Definition 2.2.9):

p :
⊕

i∈I

Ui � A,

where Ui ∈ U for all i ∈ I, for some set I.

Remark 3.1.2. The assumptions of the above Setup 3.1.1 are slightly different than the ones of
[31, C.2.1.10], but essentially equivalent. The advantage of our set of assumptions is that they
only depend on the homotopy category H0(A).

Lemma 3.1.3. Let A be as in Setup 3.1.1 above. Then, the heart H0(A)♥ is a Grothendieck
abelian category, with generators given by the set

H0
t (U) = {H0

t (U) : U ∈ U}.

In particular, A has enough derived injectives (Definition 2.3.2).

Proof. First, the assumption that H0
t preserves direct sums entails that, for any set of objects

{B j : j ∈ J} in H0(A)♥, the object H0
t (⊕ jB j) is indeed (together with the suitable structure

morphisms) a direct sum of the B j in H0(A)♥. Hence, the heart H0(A)♥ has direct sums (and in
particular all colimits).

Next, let A ∈ H0(A)♥. By hypothesis, there is a t-epimorphism

p :
⊕

i∈I

Ui � A,

where Ui ∈ U for all i ∈ I, for some set I. By definition, this induces an epimorphism

H0
t (p) :

⊕
i∈I

H0(Ui)� H0
t (A) = A,

where we also used that H0
t preserves direct sums. This shows that H0

t (U) is a set of generators
of H0(A)♥. Exactness of filtered colimits holds by assumption, so we conclude that H0(A)♥ is
indeed a Grothendieck abelian category.

By Proposition 2.3.7 we know that A has derived injectives. Since H0(A)♥ has enough in-
jectives (being Grothendieck abelian), we conclude that A has indeed enough derived injec-
tives. �

Example 3.1.4. Let a be a (small) dg-category concentrated in nonpositive degrees:

Hi(a(A, B)) � 0, A, B ∈ a, i > 0.

The derived dg-category Ddg(a) is naturally a t-dg-category (cf. Proposition 2.2.4). Moreover, it
is easy to see that it satisfies the assumptions of the above Setup 3.1.1:
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• The derived category D(a) = H0(Ddg(a)) is compactly generated and the representables
a(−, A) constitute a set of compact generators. Actually, all algebraic triangulated cate-
gories that are compactly generated are of this form (see, for example, [35, Cor 7.3]). In
particular, D(a) is well generated.
• The t-structure on Ddg(a) is clearly non-degenerate: acyclic objects are isomorphic to 0

in the derived category, practically by definition.
• Using h-projective resolutions it is easy to see that the cohomological functor

H0 : D(a)→ Mod(H0(a))

preserves (small) direct sums.
• The heart of the t-structure is Mod(H0(a)), which is a Grothendieck category. In partic-

ular, filtered colimits are exact in the heart .
• Ddg(a) has enough derived injectives. This follows from Proposition 2.3.7 and the fact

that the heart Mod(H0(a)) has enough injectives.
• The representables a(−, A) form a set of generators of the canonical t-structure. Indeed,

for any object M ∈ D(a)≤0, we can find an epimorphism⊕
i∈I

H0(a(−, Ai))� H0(M),

for a suitable family of objects {Ai : i ∈ I}. By the Yoneda lemma, we can lift this
epimorphism to a t-epimorphism⊕

i∈I

a(−, Ai)� M.

The derived dg-category Ddg(a) is a prototypical example of t-dg-category for which the derived
Gabriel-Popescu theorem holds, and it is the derived counterpart of the Grothendieck abelian
category of modules.

Example 3.1.5. In this example we assume that k is an ordinary commutative ring.
Let G be a Grothendieck k-linear category. It is well-known that the derived category D(G)

admits a unique dg-enhancement [12, Thm A] (see also §3.4) that we denote by Ddg(G). The
dg-category Ddg(G) is naturally a t-dg-category by considering the standard t-structure of D(G).
In addition, it satisfies the assumptions provided in Setup 3.1.1:

• The derived category D(G) = H0(Ddg(G)) is well generated [25, Thm 5.10]. More
concretely, we can always find a regular cardinal α , ℵ0 such that G is locally α-
presentable and its full subcategory Gα of α-presentable objects is abelian. Then D(G)
is α-compactly generated and the α-compact generators are given by D(Gα) (see [25]).
• As in Example 3.1.4 above, the t-structure is trivially non-degenerate: acyclic objects

are isomorphic to 0 in the derived category.
• The heart of the standard t-structure on D(G) is given by G. In particular, because G is

Grothendieck, we have that filtered colimits are exact in the heart.
• The cohomological functor

H0 : D(G)→ G

preserves (small) direct sums as a direct consequence of the fact that filtered colimits are
exact in G.
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• Ddg(G) has enough derived injectives. This follows from Proposition 2.3.7 and the fact
that G has enough injectives.
• Let U be a generator of G and consider it as a chain complex concentrated in degree

0. In particular, we can see U as an object in Ddg(G)≤0. We show that U is a generator
of the standard t-structure. Given a chain complex B ∈ D(G)≤0, we may assume that B
is strictly concentrated in non-positive degrees by replacing it with its truncation τ≤0B.
Then, because U generates G, we can always find a morphism of chain complexes

f :
⊕

i∈I

U → B

that is surjective on degree 0. Observe that both B and
⊕

i∈I U, seen as objects in D(G),
belong to D(G)≤0. We are going to show that the morphism induced by f in D(G) is a
t-epimorphism. Consider the distinguished triangle⊕

i∈I

U → B→ C( f )

that f induces on D(G). By construction, we have that C( f ) ∈ D(G)≤0 and it only
remains to show that H0(C( f )) = 0 to conclude. We compute the long exact sequence
of cohomology:

H−1(C( f ))→
⊕

i∈I

U � H0(B)→ H0(C( f ))→ 0

Observe that
⊕

i∈I U � H0(B) is an epimorphism in G by construction of f . Hence,
we deduce that H0(C( f )) = 0 as desired.

3.2. Statement of the main results (and a few corollaries). We let A be a t-dg-category as in
Setup 3.1.1. Moreover, we view the set of generatorsU as a full dg-subcategory of A. Recalling
§2.1.8, we set:

u = τ≤0U.

The objects of u are the same asU. There is a natural dg-functor

j : u→ A.

Recalling §2.1.6, we have a restriction quasi-functor:

Res j : Ddg(A)→ Ddg(u).

Composing it with the Yoneda embedding A ↪→ Ddg(A), we obtain a quasi-functor

G : A→ Ddg(u). (3.1)

Explicitly, this quasi-functor is given by:

GX
A = dgm(u)(X,A( j(−), A)). (3.2)

At the level of homotopy categories, this can be identified with the triangulated functor

H0(A)→ D(u),
A 7→ A( j(−), A).

(3.3)

We can finally state our main result.
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Theorem 3.2.1 (A derived Gabriel-Popescu theorem for t-dg-categories). Let A be a t-dg-
category as in Setup 3.1.1. Then, the quasi-functor

G : A→ Ddg(u),
A 7→ A( j(−), A)

(3.4)

is quasi-fully faithful and has a t-exact left adjoint quasi-functor

F : Ddg(u)→ A (3.5)

such that H0(F)(u(−,U)) � U in H0(A), naturally in U ∈ H0(u).
In particular, (A, F) is a dg-quotient (cf. §2.1.7) of Ddg(u) by its full dg-subcategory ker(F)

spanned by the objects {M ∈ Ddg(u) : H0(F)(M) � 0}.
Moreover, the adjunction F a G induces an adjunction

H0(F)♥ a H0(G)♥ : Mod(H0(u))� H0(A)♥, (3.6)

such that H0(F)♥ is exact and

H0(G)♥ : H0(A)♥ → Mod(H0(u)),

A 7→ H0(A)( j(−), A),
(3.7)

is fully faithful.

There is an obvious corollary of Theorem 3.2.1 in the case where the set of generators U
has only one object U. In that case, the dg-category u can be identified with the dg-algebra
R = τ≤0A(U,U) and the Gabriel-Popescu theorem can be restated as follows:

Corollary 3.2.2. Let A be a t-dg-category as in Setup 3.1.1, and assume that it has a single
generator U. Set

R = τ≤0A(U,U). (3.8)

Then, the quasi-functor

G : A→ Ddg(R),
A 7→ A(U, A)

(3.9)

is quasi-fully faithful and has a t-exact left adjoint quasi-functor

F : Ddg(R)→ A

such that H0(F)(R) � U in H0(A).
In particular, (A, F) is a dg-quotient (cf. §2.1.7) of Ddg(R) by its full dg-subcategory ker(F).
Moreover, the adjunction F a G induces an adjunction

H0(F)♥ a H0(G)♥ : Mod(H0(R))� H0(A)♥,

such that H0(F)♥ is exact and H0(G)♥ is fully faithful.

More interestingly, we can deduce the ordinary Gabriel-Popescu theorem from the derived
one. We state it in the classical “single generator” case, but a “many generators” version can be
deduced in the same way.
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Corollary 3.2.3 (Gabriel-Popescu theorem). Assume that k is an ordinary commutative ring.
Let A be a (k-linear) Grothendieck abelian category with a generator U. Set

R = A(U,U).

Then, there is a fully faithful functor

A→ Mod(R),
A 7→ A(U, A)

which admits an exact left adjoint.

Proof. By Example 3.1.5, the dg-derived category Ddg(A) satisfies the assumptions of Setup
3.1.1, and is generated by the object U ∈ A as a t-dg-category. Since U is concentrated in degree
0 in Ddg(A), it is easy to see that

τ≤0 Ddg(A)(U,U) � D(A)(U,U)
� A(U,U)
= R.

Then, Theorem 3.2.1 yields an adjunction

F a G : Ddg(R)� Ddg(A)

such that F is t-exact and G is quasi-fully faithful. Passing to hearts, we get an adjunction

H0(F)♥ a H0(G)♥ : Mod(R)� A,

and we know that H0(F)♥ is exact and H0(G)♥ is fully faithful. �

3.3. The proof of the derived Gabriel-Popescu theorem. The rest of the paper is devoted
to prove Theorem 3.2.1. We will organize the different parts of the proof in subsections. The
technical core of the proof will rely on a derived version of an argument used by Mitchell in his
proof of the classical Gabriel-Popescu theorem: we present this result in §3.3.3.

From now on, we fix a t-dg-category A satisfying the assumptions of Setup 3.1.1.

3.3.1. The existence of the left adjoint. In this subsection we prove the existence of the left
adjoint of the quasi-functor (3.4).

Proposition 3.3.1. Given A a dg-category as above and denote T = H0(A). Then the quasi-
functor

G : A→ Ddg(u),
A 7→ A( j(−), A)

(3.10)

has a left adjoint
F : Ddg(u)→ A (3.11)

such that H0(F)(u(−,U)) � U in H0(A) naturally in U ∈ H0(u).

Proof. Recalling [17, Theorem 1.2], the goal is to prove that the quasi-functor G, explicitly
given by

GX
A = dgm(u)(X,A( j(−), A))

is left quasi-representable. Namely, for any X ∈ Ddg(u), we want an isomorphism in D(Aop):

GX
? � A(ΦF(X), ?),
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where ΦF(X) is an object in A. In other words we want that GX
? is quasi-representable. Then,

the mapping X 7→ ΦF(X) will describe the left adjoint quasi-functor F of G.
We let S be the full dg-subcategory of Ddg(u) spanned by

{X ∈ Ddg(u) : GX
? is quasi-representable}.

We immediately see that H0(S) is closed under isomorphisms in H0(Ddg(u)). The dg-category
Ddg(u) = h-proj(u) is strongly pretriangulated and closed under (small) direct sums in dgm(u).
Moreover, it is well-known [20, §4.2] that H0(Ddg(u)) � D(u) is the smallest full triangulated
subcategory of itself which contains the representables u(−,U) and it is closed under arbitrary
(small) direct sums. Hence, it is enough to prove that S contains the representables u(−,U) and
it is closed under shifts, mapping cones and arbitrary (small) direct sums in Ddg(u).

First, if U ∈ u, we have:

Gu(−,U)
? = dgm(u)(u(−,U),A( j(−), ?))

� A(U, ?), (Yoneda)

so ΦF(u(−,U)) = U and the representables lie in S.
If Y ∈ S and n ∈ Z, then we have isomorphisms in D(Aop):

GY[n]
? = dgm(u)(Y[n],A( j(−), ?))

� dgm(u)(Y,A( j(−), ?))[−n]
� A(ΦF(Y), ?)[−n]
� A(ΦF(Y)[n], ?),

so ΦF(Y[n]) = ΦF(Y)[n] and S is closed under shifts.
Let g : Y → Y ′ be a closed morphism of degree 0 in S. By hypothesis and the (derived)

Yoneda lemma, we can find a closed degree 0 morphism f : ΦF(Y)→ ΦF(Y ′) in A such that the
following diagram in D(Aop) is commutative:

A(ΦF(Y ′), ?) A(ΦF(Y), ?)

GY′
? GY

?

f ∗

∼ ∼

Gg

We then complete the above diagram to the following morphism of distinguished triangles in
D(Aop):

A(C( f ), ?) A(ΦF(Y ′), ?) A(ΦF(Y), ?)

GC(g)
? GY′

? GY
?

∼

f ∗

∼ ∼

Gg

We deduce that GC(g)
? � A(C( f ), ?) in D(Aop), so that ΦF(C(g)) = C( f ), and S is closed under

taking cones.
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Finally, let {Yi : i ∈ I} be a small family of objects in S. Then, we have isomorphisms in
D(Aop):

G⊕iYi
? = dgm(u)(

⊕
i

Yi,A( j(−), ?))

�
∏

i

dgm(u)(Yi,A( j(−), ?))

�
∏

i

A(ΦF(Yi), ?) (prod. of qis of dg-modules is a qis)

� A(
⊕

i

ΦF(Yi), ?), (H0(A) has small direct sums by hypothesis)

where
⊕

i ΦF(Yi) is the direct sum in H0(A), and we implicitly used Lemma 2.1.2. So, we may
set ΦF(

⊕
i Yi) =

⊕
i ΦF(Yi), and S is closed under arbitrary direct sums.

By construction, we also see that

H0(F)(u(−,U)) � ΦF(u(−,U)) = U,

holds naturally in U ∈ H0(u), and the proof is complete. �

3.3.2. F is right t-exact.

Notation 3.3.2. From now on, we set T = H0(A). For the sake of readability, we will often
abuse notation and set F = H0(F), G = H0(G). We have an adjunction

F a G : D(u)� T,

with G(A) = A( j(−), A) and F(u(−,U)) � U for all U ∈ u.

Proposition 3.3.3. G is left t-exact, namely G(T≥0) ⊆ D(u)≥0. In particular, F is right t-exact,
namely F(D(u)≤0) ⊆ T≤0.

Proof. Assume that A ∈ T≥0, and let k > 0. Then:

H−k(G(A)) = H−k(A( j(−), A))
� T( j(−), A[−k])
= 0,

since the objects of u lie in the left aisle T≤0 by assumption. This proves that G(A) ∈ D(u)≥0. The
right t-exactness of F follows from the fact that it is the left adjoint of G (Proposition 2.2.7). �

3.3.3. The key lemma: A derived version of Mitchell’s argument. The rest of the proof of the
Gabriel-Popescu theorem for t-structures will be based on a derived version of a lemma by
Mitchell [32], further generalized to the “several generators” case in [14]. We devote this sub-
section to provide this result and some of its consequences.

We start with a technical lemma, where we make careful use of functorial cones in A.

Lemma 3.3.4. Let {Xi : i ∈ I} be a set of objects in H0(A), and let

xi : Xi →
⊕

i∈I

Xi
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be the natural morphism into the direct sum in H0(A). If F ⊆ I is a finite set, let

xF = ⊕F xi :
⊕
i∈F

Xi →
⊕

i∈I

Xi,

be the morphism induced by the xi for i ∈ F; if F ⊆ F′ is an inclusion of finite subsets of I, let

xF,F′ :
⊕
i∈F

Xi →
⊕
i∈F′

Xi

the natural morphism. The morphisms (xF,F′) clearly form a directed system, and

xF′ ◦ xF,F′ = xF (3.12)

in H0(A). Moreover, let
ψ :

⊕
i∈I

Xi → Y

be a morphism in H0(A). For any finite subset F ⊆ I, let

ψF :
⊕
i∈F

Xi → Y

be the composition ψ ◦ xF .
Set K = C(ψ)[−1] and KF = C(ψF)[−1] for any finite subset F ⊆ I. Then, for any finite

subsets F ⊆ F′ ⊆ I, we can find morphisms
αF : KF → K,

αF,F′ : KF → KF′ ,

such that the morphisms (αF,F′) form a directed system and

αF′ ◦ αF,F′ = αF (3.13)

in H0(A); furthermore, these morphisms fit in the following morphisms of distinguished trian-
gles:

KF
⊕

i∈F Xi Y

KF′
⊕

i∈F′ Xi Y

K
⊕

i∈I Xi Y.

αF,F′

ψF

xF,F′

αF′ xF′

ψF′

ψ

(3.14)

Moreover, the morphisms (αF) induce isomorphisms

lim
−−→
F⊆I

Hn
t (KF)

∼
−→ Hn

t (K) (3.15)

in H0(A)♥, for all n ∈ Z.

Proof. Up to quasi-equivalence, we may assume that A is strongly pretriangulated (cf. §2.1.2).
We let X be the direct sum of {Xi : i ∈ I} in H0(A). For all i ∈ I, we choose a closed and degree
0 morphism

xi : Xi → X B
⊕

i∈I

Xi
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representing the natural inclusion in H0(A). Since A is strongly pretriangulated, the finite direct
sums

⊕
i∈F Xi exist (strictly!) in A, and the natural morphisms

xF,F′ :
⊕
i∈F

Xi →
⊕
i∈F′

Xi

are well defined closed degree 0 morphisms in A, for finite subsets F ⊆ F′ of I. Moreover, the
morphisms xi induce morphisms

xF :
⊕
i∈F

Xi → X,

and it is immediate to see that we have a strict equality:

xF′ ◦ xF,F′ = xF .

Next, we take a closed degree 0 lift of the morphism ψ : X → Y . We abuse notation and call it
again ψ. We then define:

ψF = ψ ◦ xF

as a closed degree 0 morphism in A, so that we have a (strictly!) commutative diagram of closed
degree 0 morphisms: ⊕

i∈F Xi Y

⊕
i∈F′ Xi Y

X Y,

xF,F′

ψF

ψF′

xF′

ψ

for finite subsets F ⊆ F′ of I. We now define K = C(ψ)[−1] and KF = C(ψF)[−1], which exist
as strict functorial cones in A, since A is strongly pretriangulated. Invoking Lemma 2.1.1, we
find unique closed degree 0 morphisms

αF : KF → K,
αF,F′ : KF → KF′ ,

which fit in the (strictly!) commutative diagram:

KF
⊕

i∈F Xi Y KF[1]

KF′
⊕

i∈F′ Xi Y KF′[1]

K X Y K[1].

αF,F′

ψF

xF,F′ αF,F′ [1]

αF′ xF′

ψF′

αF′ [1]

ψ

(∗)

Since xF = xF′ ◦ xF,F′ , we conclude by uniqueness that

αF = αF′ ◦ αF,F′ ,

for finite subsets F ⊆ F′ ⊆ I. A similar uniqueness argument shows that the morphisms (αF,F′)
form indeed a directed system. By passing to the homotopy category H0(A), we get the proof
of the first part of the lemma.



DERIVED GABRIEL-POPESCU VIA DERIVED INJECTIVES 30

For the second part, we take the following commutative diagram obtained by taking cohomo-
logical long exact sequences from (∗) and then filtered colimits on the poset of finite subsets of
I (n ∈ Z):

lim
−−→
F⊆I

⊕
i∈F

Hn
t (Xi) Hn

t (Y) lim
−−→
F⊆I

Hn+1
t (KF) lim

−−→
F⊆I

⊕
i∈F

Hn+1
t (Xi) Hn+1

t (Y)

⊕
i∈I

Hn
t (Xi) Hn

t (Y) Hn+1
t (K)

⊕
i∈I

Hn+1
t (Xi) Hn+1

t (Y).

lim
−→

Hn
t (xF ) lim

−→
Hn+1

t (αF ) lim
−→

Hn+1
t (xF )

We used that Hk
t (−) preserves direct sums, and identified

Hk
t (X) �

⊕
i∈I

Hk
t (Xi)

for all k ∈ Z. Furthermore, it is well-known that the morphism

lim
−−→
F⊆I

⊕
i∈F

Hk
t (Xi)→

⊕
i∈I

Hk
t (Xi)

is an isomorphism. By assumption, filtered colimits are exact in the heart: this implies that
both rows of the above commutative diagram are exact, hence we may apply the five lemma and
conclude that

lim
−−→
F⊆I

Hn+1
t (KF)→ Hn+1

t (K)

is an isomorphism, as we wanted. �

Notation 3.3.5. From now on, as done in notation 3.3.2, we will often abuse notation and set
j = H0( j). We have that for every X ∈ T, the functor

T( j(−), X) : H0(u)
op
→ Mod(H0(k)),

is an H0(u)-module, i.e. it is an object in Mod(H0(u)).

We can now prove our key lemma:

Lemma 3.3.6 (“à la Mitchell”). Let B ∈ T≥0, and let A ∈ T. Let AM ↪→ T( j(−), A) be a
submodule (i.e. a monomorphism in Mod(H0(u))), and let

f : AM → T( j(−), B)

be a morphism in Mod(H0(u)). Denote by M the set
∐

U∈U
AM(U). Consider the induced

diagram: ⊕
m∈M Um A

B,

ψ

ϕ

where m ∈ AM(Um) ⊆ M and ϕ and ψ are defined as follows. If um : Um →
⊕

m∈M Um is the
natural map associated to m ∈ M, then:

ψum = m ∈ T(Um, A),
ϕum = f (Um)(m) ∈ T(Um, B).



DERIVED GABRIEL-POPESCU VIA DERIVED INJECTIVES 31

Then, ϕ factors through Coim(ψ):

⊕
m∈M Um Coim(ψ) A

B.

ϕ

ψ

(3.16)

Proof. The proof is a generalization of Mitchell’s argument [32]. Let K be the object sitting in
the distinguished triangle

K →
⊕
m∈M

Um
ψ
−→ A.

Then, denoting by µ : τ≤0K →
⊕

m∈M Um the composition

τ≤0K → K →
⊕
m∈M

Um,

it is enough to check that ϕµ = 0 (see Proposition 2.2.11). Notice that ψµ = 0. Let F be the
poset of finite subsets of M, and for F ∈ F denote by

ψF :
⊕
m∈F

Um → A

the morphism induced by ψ. Let KF = C(ψF)[−1]. We apply Lemma 3.3.4 to the distinguished
triangles

KF →
⊕
m∈F

Um
ψF
−−→ A

and taking truncations we also get a directed system

(λF,F′ : τ≤0KF → τ≤0KF′)F,F′∈F

and morphisms
λF : τ≤0KF → τ≤0K

such that λF = λF′ ◦ λF,F′ . If we define µF as the composition

τ≤0KF → KF →
⊕
m∈F

Um,

we get following commutative diagram in T (rows are not distinguished triangles):

τ≤0KF
⊕

m∈F Um A

τ≤0K
⊕

m∈M Um A,

µF

λF

ψF

∑
m∈F um pm

µ ψ

We wrote the natural morphism
⊕

m∈F Um →
⊕

m∈M Um as
∑

F um pm, where pm is the nat-
ural projection of place m from

⊕
m∈F Um to Um. Thanks to Lemma 3.3.4, the morphisms

λF : τ≤0KF → τ≤0K yield an isomorphism

lim
−−→
F∈F

H0(λF) : lim
−−→
F∈F

H0
t (τ≤0KF)

∼
−→ H0

t (τ≤0K), (3.17)
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recalling that we may identify H0
t (−) with H0

t (τ≤0−).
Now, ϕµ is a morphism τ≤0K → B and B ∈ T≥0, so this morphism (and, in general, morphisms

with codomain B and domain in T≤0) is completely determined by its H0:

T(τ≤0K, B) � T(τ≤0K, τ≤0B)
� T(τ≥0τ≤0K, τ≤0B)

� T(H0(τ≤0K),H0(B)).

We hence want to prove that H0(ϕµ) = 0. Thanks to the above isomorphism (3.17), it is enough
to prove that H0(ϕµλF) = 0 for all F. In turn, sinceU is a set of generators, this is equivalent to
proving that H0(ϕµλFα) = 0 for all α : U → τ≤0KF with U ∈ U, which again is equivalent to
proving ϕµλFα = 0. Now, we can compute:

ϕµλFα = ϕ
∑

F

um pmµFα

=
∑

F

( f (Um)(m))pmµFα

=
∑

F

f (U)(mpmµFα) ( f is a morphism in Mod(H0(u))

=
∑

F

f (U)(ψum pmµFα)

= f (U)(ψµλFα) =

= f (U)(0)
= 0,

and we conclude. �

The following easy corollary will be useful for our purposes.

Corollary 3.3.7. In the framework and notation of the above Lemma 3.3.6, assume that we can
find a further factorization of ϕ through ψ:

⊕
m∈M Um Coim(ψ) A

B.

ϕ

ψ

ϕ̃
(3.18)

Then, the morphism f̃ B ϕ̃∗ : T( j(−), A)→ T( j(−), B) makes the following diagram commute:

AM T( j(−), A)

T( j(−), B).

f
f̃

(3.19)
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Proof. From the commutative diagram:⊕
m∈M Um A

B

ψ

ϕ
ϕ̃

we can compute:

ϕ̃∗(Um)(m) = ϕ̃ ◦ m
= ϕ̃ ◦ ψ ◦ um

= ϕ ◦ um

= f (Um)(m),

for all m ∈ M, where we are using that m ∈ AM(Um) ⊆ T(Um, A). �

Remark 3.3.8. In the setting of Lemma 3.3.6, assume that B = E is a derived injective. Then,
Corollary 3.3.7 is applicable. Indeed, by Corollary 2.3.6 we can find an extension of Coim(ψ)→
E along the t-monomorphism Coim(ψ) ↪→ A.

Remark 3.3.9. In the setting of Lemma 3.3.6, assume that A ∈ T≤0, take AM = T( j(−), A), the
morphism T( j(−), A) → T( j(−), A) be the identity and, as above, M =

∐
U∈U T(U, A). Then,

Coim(ψ) � A and Corollary 3.3.7 is applicable. Indeed, thanks to Corollary 2.2.12 and Remark
2.3.9 it is enough to check that the morphism

ψ :
⊕
m∈M

Um → A

is surjective in H0. Let y : H0(A) → Z be a morphism in the heart T♥. We want to prove
that if yH0(ψ) = 0, then y = 0. Thanks to the compatibility of H0 with direct sums, the
assumption yH0(ψ) = 0 is equivalent to yH0(ψum) = yH0(m) = 0 for all m ∈ M, where
um : Um →

⊕
m∈M Um is the natural morphism and by definition ψum = m ∈ T(Um, A). Next,

let p :
⊕

i∈I Ui → A be a morphism with Ui ∈ U for all i ∈ I which is surjective in H0, and let
pi : Ui → A be the component corresponding to i ∈ I. Then, we have yH0(pi) = 0 for all i ∈ I,
hence yH0(p) = 0. We finally conclude that y = 0 since H0(p) is an epimorphism.

We may use Lemma 3.3.6 and Corollary 3.3.7 to obtain the following two corollaries that can
be seen as providing a variant of fully faithfulness of the functor G.

Corollary 3.3.10. Let A ∈ T and let E ∈ T≥0 be a derived injective. Recall that we had
j : u = τ≤0U → A. Then, the morphism

T(A, E)→ Mod(H0(u)) (T ( j(−), A) ,T ( j(−), E)) ,
f 7→ f∗

is an isomorphism.

Proof. First, we check injectivity. Let f : A→ E such that f∗ = 0. Since U ∈ T≤0 for all U ∈ U,
we have T( j(−), B) � T( j(−), τ≤0B) for any B ∈ T, and f∗ = 0 is the same as (τ≤0 f )∗ = 0, with

(τ≤0 f )∗ : T( j(−), τ≤0A)→ T( j(−), τ≤0E).
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On the other hand, since E is a derived injective, f = 0 is equivalent to

H0( f ) = 0: H0(A)→ H0(E)

in the heart. Now, take a morphism p :
⊕

i∈I Ui → τ≤0A with Ui ∈ U inducing an epimorphism
in H0, and denote by xi : Ui →

⊕
i∈I Ui the natural morphism, for i ∈ I. By hypothesis, we have

that (τ≤0 f )∗(pxi) = 0 for all i ∈ I, which implies (τ≤0 f )∗(p) = 0; in particular H0( f )H0(p) = 0.
Since H0(p) is an epimorphism, we conclude that H0( f ) = 0, as we wanted.

Let us now show surjectivity. We apply Lemma 3.3.6 taking the identity morphism AM =

T( j(−), A) and we recall Remark 3.3.8: by Corollary 3.3.7 we actually obtain that, given any
g : T( j(−), A)→ T( j(−), E), there exists ϕ : A→ E such that ϕ∗ = g, which is precisely what we
need. �

Corollary 3.3.11. Let A ∈ T≤0 and let B ∈ T≥0. Recall that we had j : u = τ≤0U → A. Then,
the morphism

T(A, B)→ Mod(H0(u)) (T ( j(−), A) ,T ( j(−), B)) ,
f 7→ f∗

is an isomorphism.

Proof. First, we check injectivity. Let f : A → B such that f∗ = 0. Since A ∈ T≤0 and B ∈ T≥0,
we have T(A, B) � T(H0(A),H0(B)), and f = 0 is equivalent to

H0( f ) = 0: H0(A)→ H0(B)

in the heart. Now, take a morphism p :
⊕

i∈I Ui → A with Ui ∈ U inducing an epimorphism in
H0, and denote by xi : Ui →

⊕
i∈I Ui the natural morphism, for i ∈ I. By hypothesis, we have

that f∗(pxi) = 0 for all i ∈ I, which implies that f∗(p) = 0; in particular H0( f )H0(p) = 0. Since
H0(p) is an epimorphism, we conclude that H0( f ) = 0, as we wanted.

Let us now show surjectivity. We apply Lemma 3.3.6 taking the identity morphism AM =

T( j(−), A) and we recall Remark 3.3.9: by Corollary 3.3.7 we actually obtain that, given any
g : T( j(−), A)→ T( j(−), B), there exists ϕ : A→ B such that ϕ∗ = g, which is precisely what we
need. �

Corollary 3.3.12. The functor G♥ : T♥ → Mod(H0(u)) is fully faithful.

Proof. Apply corollary 3.3.11 to objects A and B in the heart T♥. One concludes immediately
by recalling that G♥ is precisely given by

G♥(X) = H0(G(X)) = T( j(−), X). �

3.3.4. G preserves derived injectives. In this subsection we make use of §3.3.3 in order to show
that G preserves derived injectives.

Proposition 3.3.13. Let E ∈ T be a derived injective. Then,

H0(G(E)) � T( j(−), E)

is an injective object in Mod(H0(u)).
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Proof. Applying the generalization of Baer’s criterion to Grothendieck categories [1, Prop 1.14],
it is enough to prove that for all U ∈ u and any subobject M ⊆ H0(u)(−,U) = T( j(−),U), any
morphism f : M → T( j(−), E) in Mod(H0(u)) can be extended:

M T( j(−),U)

T( j(−), E).

f
f̃

This follows directly from the above Corollary 3.3.7, choosing A = U and B = E: indeed, since
E is derived injective, the extension Coim(ψ)→ E can be further extended along Coim(ψ) ↪→ U
(Remark 3.3.8). �

Proposition 3.3.14. The functor G : T → D(u) preserves derived injectives.

Proof. Let E ∈ T≥0 be a derived injective. We know from left t-exactness that G(E) ∈ D(u)≥0
and from Proposition 3.3.13 that H0(G(E)) is an injective object. From Proposition 2.3.7 we
have that the derived category D(u) has derived injectives, so there is a derived injective object
K = L(H0(G(E))). From the universal property, we also get a morphism

α : G(E)→ K,

such that H0(α) = 1H0(G(E)). We are going to show that α is an isomorphism. To do this, it is
enough to show that

D(u)(u(−,U)[−n],G(E))
α∗
−−→ D(u)(u(−,U)[−n],K),

is an isomorphism for all U ∈ u and all n > 0. We have a commutative diagram:

D(u)(u(−,U)[−n],G(E)) Mod(H0(u))(H−n(u(−,U)),H0(G(E)))

D(u)(u(−,U)[−n],K)

α∗

H0

∼

The above diagonal morphism

D(u)(u(−,U)[−n],K)→ Mod(H0(u))(H−n(u(−,U)),H0(G(E)))

is an isomorphism, since K = L(H0(G(E))) is the derived injective associated to H0(G(E)). Let
us consider the horizontal morphism

H0 : D(u)(u(−,U)[−n],G(E))→ Mod(H0(u))(H−n(u(−,U)),H0(G(E))).

If we show that it is an isomorphism as well, we conclude that α∗ is an isomorphism, as we wish.
Observe that the morphism can be identified with

Hn(G(E))(U) � T(U[−n], E)→ Mod(H0(u)) (T( j(−),U[−n]),T ( j(−), E)) ,

since H−n(u(−,U)) � H−nτ≤0A( j(−),U) � T( j(−),U[−n]). Then, we can conclude that it is an
isomorphism by Corollary 3.3.10. �

Corollary 3.3.15. The functor F : D(u)→ T is t-exact.

Proof. In Proposition 3.3.3 we already proved that F is right t-exact. The left t-exactness follows
from Proposition 3.3.14 and Proposition 2.3.10. �
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3.3.5. G is quasi-fully faithful.

Remark 3.3.16. Let us distinguish again, contradicting momentarily Notation 3.3.2, between the
dg functor G : A→ Ddg(u) and the induced functor H0(G) : T → D(u). Observe that as both A

and Ddg(u) are pretriangulated dg-categories, in order to prove the quasi-fully faithfulness of G
it is enough to prove that H0(G) is fully faithful. From this moment on we abuse notations and
set, once more, G = H0(G), as we did in Notation 3.3.2.

We recall that, by Proposition 2.2.8, the adjunction F a G induces an adjunction between the
hearts:

F♥ a G♥ : Mod(H0(u))� T♥. (3.20)
Observe that, if X ∈ T♥, then by definition

G♥(X) = H0(A( j(−), X))
= T( j(−), X)

� T♥(H0( j(−)), X).

Proposition 3.3.17. The functor G is fully faithful.

Proof. We want to show that the counit morphism

εA : FG(A)→ A (3.21)

is an isomorphism for all A ∈ T. First, we notice that (3.21) is an isomorphism if and only if

H0(F(G(A[n])))→ H0(A[n])

is an isomorphism for all n ∈ Z. Since F is t-exact, it commutes with cohomologies and we may
identify

H0(F(G(A[n]))) = F(H0(G(A[n]))) = F♥(H0(G(A[n]))).
Moreover, notice that the natural morphism τ≤0(A[n])→ A[n] induces isomorphisms

H0(τ≤0(A[n]))→ H0(A[n])

and
H0(G(τ≤0(A[n])) = T( j(−), τ≤0(A[n]))

∼
−→ T( j(−), A[n]) = H0(G(A[n])).

We are going to view them as identifications. Hence, we conclude that (3.21) is an isomorphism
if and only if the morphism

F♥(H0(G(τ≤0(A[n]))))→ H0(τ≤0(A[n]))

is an isomorphism in the heart T♥. Hence, we may ease notation and reduce ourselves to prove
that the morphism

e : F♥(H0(G(A)))→ H0(A) (3.22)
is an isomorphism in T♥ for all A ∈ T≤0. This morphism (3.22) is obtained from (3.21) by taking
cohomology and making the identifications discussed above.

Now, (3.22) is an isomorphism if and only if, for all objects B ∈ T♥, we have that

e∗ : T(H0(A), B)→ T(F♥(H0(G(A))), B) (3.23)

is an isomorphism. Since B ∈ T♥ and A ∈ T≤0, we may further identify

T(A, B) = T(H0(A), B).
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The adjunction F♥ a G♥ yields an isomorphism

T(F♥(H0(G(A))), B) � Mod(H0(u))(H0(G(A)),H0(G(B))

= Mod(H0(u))(T( j(−), A),T( j(−), B)),

and moreover it is easy to check that the composition

T(A, B) = T(H0(A), B)
e∗
−→ T(F♥(H0(G(A))), B) � Mod(H0(u))(T( j(−), A),T( j(−), B))

is actually the natural morphism which maps f ∈ T(A, B) to f∗ : T( j(−), A)→ T( j(−), B). Hence,
if we finally show that this composition f 7→ f∗ is an isomorphism, we will conclude that e∗ is
an isomorphism, as we want. But this now follows directly from Corollary 3.3.11. �

3.3.6. Conclusion. We are now in position to provide the proof of our main result.

Proof of Theorem 3.2.1. It follows from Proposition 3.3.1, Corollary 3.3.12, Corollary 3.3.15,
Remark 3.3.16 and Proposition 3.3.17. �

3.4. An application: derived categories of Grothendieck abelian categories and dg-en-
hancements. In this part, we assume that k is an ordinary commutative ring, and as usual every
category (dg or triangulated) will be implicitly taken over k.

If T is a triangulated category, a dg-enhancement of T is by definition a pretriangulated dg-
category A such that there is a triangulated equivalence H0(A) � T. Many categories admit dg-
enhancements, for examples derived categories D(A) of abelian categories: a dg-enhancement
of D(A) can be described as a dg-quotient, cf. [12]. Triangulated categories which admit a
dg-enhancement are called algebraic. When such enhancements exist, it is an interesting and
important problem to understand whether they are unique, in the following sense:

Definition 3.4.1. Let T be an algebraic triangulated category. Then, T has a unique dg-enhance-
ment if for given pretriangulated dg-categories A and B such that H0(A) � H0(B) � T, there
exists a quasi-equivalence A � B (in the sense of quasi-functors, cf. 2.1.4).

The uniqueness of dg-enhancements has been addressed in recent works. In [10] uniqueness
is proved for all kinds of derived categories of abelian categories; in [3] uniqueness results are
proved for stable ∞-categorical enhancements. In particular, it is now known that the derived
category D(G) of a Grothendieck abelian category G has a unique dg-enhancement: see [13] for
the original proof.

Here, we show how Theorem 3.2.1 can be applied to achieve a quick proof of the uniqueness
of dg-enhancement in the case of derived categories of Grothendieck abelian categories. The
idea of the proof is actually quite similar to the one of [3, Theorem 6.6].

Theorem 3.4.2. Let G be a Grothendieck abelian category. Then, the derived category D(G)
has a unique dg-enhancement.

Proof. Let A and B be pretriangulated dg-categories such that H0(A) � H0(B) � D(G). The
derived category D(G) has the t-structure described in Example 3.1.5, which in particular is
generated by a chosen generator U ∈ G. We may use the above triangulated equivalences to
transport this t-structure on H0(A) and H0(B), thus making A and B t-dg-categories satisfying
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the assumptions of Setup 3.1.1. In particular, we have generators U1 of A and U2 of B with the
property that they actually live in the hearts:

U1 ∈ H0(A)♥,

U2 ∈ H0(B)♥.

It is immediate to observe that A(U1,U1) and B(U2,U2) are complexes concentrated in nonneg-
ative degrees. Hence, we have that

R1 := τ≤0A(U1,U1) � H0(A)(U1,U1),

R2 := τ≤0B(U2,U2) � H0(B)(U2,U2),

and in particular R1 and R2 are ordinary rings. If we call T : H0(A) → H0(B) the equivalence
supplied by the hypothesis, we have by construction that it is t-exact, T (U1) = U2 and there is
an isomorphism

f : R1 = H0(A)(U1,U1)
∼
−→ H0(B)(U2,U2) = R2

induced by T .
The derived Gabriel-Popescu theorem (Theorem 3.2.1) yields the following diagram of quasi-

functors:

ker(F1) Ddg(R1) A

ker(F2) Ddg(R2) B.

F1

Ind f Ind f−1

F2

F1 and F2 are t-exact and realize A and B as dg-quotients of Ddg(R1) and Ddg(R2) respectively
by ker(F1) and ker(F2). The dg-functors Ind f and Ind f −1 are dg-equivalences inverse to each
other (cf. §2.1.6). Moreover, we have that Ind f −1 � Res f and Ind f � Res f −1 , and it is immediate
to prove that they are both t-exact with respect to the canonical t-structures. If we could show
that Ind f and Ind f ′ restrict to equivalences

Ind f : ker(F1)� ker(F2) : Ind f −1

we could conclude that A is quasi-equivalent to B, thanks to the universal property of the dg-
quotient (cf. §2.1.7).

We then go on to prove that Ind f (ker(F1)) ⊆ ker(F2). The reverse inclusion will follow from
Ind f −1(ker(F2)) ⊆ ker(F1), which can be proved in the same way. For the sake of simplicity, we
abuse notation and we identify Fi = H0(Fi) (i = 1, 2). Let X ∈ ker(F1). We want to prove that
F2(Ind f (X)) � 0 in H0(B). The t-structure on B is non-degenerate and both F2 and Ind f are
t-exact, hence this is equivalent to:

Hk(F2(Ind f (X))) � F2(Ind f (Hk(X))) � 0 (3.24)

in H0(B)♥, for all k ∈ Z.
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We now consider the following diagram of Grothendieck (in particular cocomplete) abelian
categories and exact functors:

Mod(R1) H0(A)♥

Mod(R2) H0(B)♥.

Ind f

F1

T

F2

We can prove that this diagram is actually commutative. Since F1, F2 are cocontinuous (being
left adjoints) and both Ind f and T are also cocontinuous (being equivalences), to check that
T ◦F1 � F2◦Ind f as functors Mod(R1)→ H0(B)♥ is equivalent to check that they are equivalent
on the generator R1 of Mod(R1). Indeed:

T (F1(R1)) � T (U1)
� U2

� F2(R2)
� F2(Ind f (R1)),

and we can directly check that this isomorphism is actually natural, namely, compatible with
morphisms R1 → R1 in Mod(R1) (it follows from the Yoneda lemma and how these functors are
defined).

Finally, we can check (3.24) as follows:

F2(Ind f (Hk(X))) � T (F1(Hk(X)))

� Hk(T (F1(X))) (t-exactness)
� 0 (X ∈ ker(F1)).

This allows us to conclude. �

Appendix A. A “Baer criterion” for derived injectivity

In this appendix, we prove a characterization of derived injectivity which holds under some
additional assumptions on the given t-structure. In particular, we will obtain a “Baer-like” crite-
rion for derived injectives in the derived category D(R) of a k-dg-algebra R which is concentrated
in nonpositive degrees (cf. Proposition 2.2.4 for the natural t-structure on D(R)).

We first recall a (well-known) result which characterizes injective objects in the heart in terms
of a vanishing condition.

Lemma A.1. Let T be a triangulated category with a t-structure, and let I ∈ T♥ be an object in
the heart. Then, I is injective if and only if

T(Z[−1], I) � 0,

for all Z ∈ T♥.

Proof. Assume that the above vanishing condition holds, and let

0→ A→ B→ C → 0

be a short exact sequence in T♥. This induces a distinguished triangle

A→ B→ C
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in T. We consider the long exact sequence:

T(A[1], I)→ T(C, I)→ T(B, I)→ T(A, I)→ T(C[−1], I).

Since A[1] ∈ T≤−1, we have T(A[1], I) � 0; moreover, the hypothesis ensures that T(C[−1], I) �
0. We conclude that T♥(−, I) is exact, as we wanted.

On the other hand, let I be injective, Z ∈ T♥ and let f ∈ T(Z[−1], I). We want to prove that
f = 0. We take the distinguished triangle:

Z[−1]
f
−→ I

g
−→ A→ Z. (∗)

Since I and Z are in T♥, the same is true for A (the heart is extension-closed in T). Moreover,
the sequence

0→ I → A→ Z → 0
is exact in T♥. Since I is injective, the morphism

g∗ : T(A, I)� T(I, I)

is surjective. We now take the long exact sequence associated to (∗):

T(A, I)
g∗
−−→ T(I, I)

f ∗
−−→ T(Z[−1], I).

We have that f = f ∗(1I), and by surjectivity of g∗ we have that 1I = g∗(α) for some α ∈ T(A, I).
By exactness, we conclude that f = f ∗g∗(α) = 0, as claimed. �

Next, we prove a refined version of Proposition 2.3.5, under the additional assumption that
the t-structure is non-degenerate and its heart has a set of generators.

Proposition A.2. Let T be a triangulated category with a non-degenerate t-structure (Definition
2.3.8) which has derived injectives (Definition 2.3.2). Moreover, assume that the heart T♥ has a
set G of generators. Then, for any object E ∈ T, the following conditions are equivalent:

(1) E is derived injective (Definition 2.3.2).
(2) E ∈ T≥0 and for any Z ∈ T≥0 we have

T(Z[−1], E) � 0.

(3) E ∈ T≥0 and for any Z ∈ T♥ we have

T(Z[−n], E) � 0, (A.1)

for all n ≥ 1.
(4) E ∈ T≥0, its zeroth cohomology H0(E) is an injective object in T♥ and for any generator

G ∈ G in the heart we have:

T(G[−n], E) � 0, (A.2)

for any n ≥ 1.

Proof. The equivalence (1)⇔ (2) is proved in Proposition 2.3.5.
(2)⇒ (3) is immediate.
The only nontrivial part of (3)⇒ (4) is to prove that H0(E) is an injective object in T♥. To do

so, we can argue as in the proof of (2)⇒ (1) of Proposition 2.3.5. A slightly different argument
is as follows. Since E ∈ T≥0 and hence H0(E) � τ≤0E, we take the canonical distinguished
triangle:

H0(E)→ E → τ≥1E,
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and for Z ∈ T♥ the induced long exact sequence:

T(Z[−1], (τ≥1E)[−1])→ T(Z[−1],H0(E))→ T(Z[−1], E).

We have T(Z[−1], (τ≥1E)[−1]) � T(Z, τ≥1E) � 0, and T (Z[−1], E) � 0 by hypothesis. Therefore
T(Z[−1],H0(E)) � 0 and we can conclude invoking the above Lemma A.1.

We now turn to (4) ⇒ (1), which is the actual nontrivial part of the proof (and the only one
which uses the assumptions that the t-structure is non-degenerate and has derived injectives). We
shall write [−,−] for the hom-space in T. By hypothesis, H0(E) is injective and the associated
derived injective L(H0(E)) exists, hence we can uniquely lift the identity morphism H0(E) →
H0(E) to a morphism in T:

f : E → L(H0(E)). (A.3)
The goal is to show that f is an isomorphism. We already know (Proposition 2.3.5) that H0( f ) =

τ≤0 f = id : H0(E)→ H0(E). We shall now argue by induction: for n > 0, assume that

τ≤n−1 f : τ≤n−1E → τ≤n−1L(H0(E))

is an isomorphism. We want to prove that

Hn( f ) : Hn(E)→ Hn(L(H0(E)))

is also an isomorphism, which will imply that τ≤n f is an isomorphism. For simplicity, call
L(H0(E)) = E′ and consider the following commutative diagram, where the rows are canonical
distinguished triangles:

(τ≤n−1E)[n] (τ≤nE)[n] Hn(E) (τ≤n−1E)[n + 1]

(τ≤n−1E′)[n] (τ≤nE′)[n] Hn(E′) (τ≤n−1E′)[n + 1].

∼

λ

Hn( f ) ∼

µ

(A.4)

Next, let Z ∈ T♥. We first prove that

µ∗ : [Z,Hn(E′)]→ [Z, (τ≤n−1E′)[n + 1]]

is an isomorphism. Indeed, take the canonical distinguished triangle:

τ≤n−1E′ → E′ → τ≥nE′

and the induced long exact sequence:

[Z, E′[n]]→ [Z, (τ≥nE′)[n]]→ [Z, (τ≤n−1E′)[n + 1]]→ [Z, E′[n + 1]].

E′ is a derived injective, so [Z, E′[k]] = [Z[−k], E′] = 0 for k = n, n + 1 (recall that n > 0), so
we have that

[Z, (τ≥nE′)[n]]
∼
−→ [Z, (τ≤n−1E′)[n + 1]]

is an isomorphism. Finally, since Z is in the heart, we also have an isomorphism

[Z, τ≤0((τ≥nE′)[n])]
∼
−→ [Z, (τ≥nE′)[n]],

and then we recall that τ≤0((τ≥nE′)[n]) � (τ≤nτ≥nE′)[n] = Hn(E′), and we conclude observing
that the composition

[Z,Hn(E′)]
∼
−→ [Z, (τ≥nE′)[n]]

∼
−→ [Z, (τ≤n−1E′)[n + 1]]

is indeed induced by µ.
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Now, let G ∈ G be a generator of T♥ and consider the following commutative diagram (com-
pare with (A.4)):

[G,Hn(E)] [G, (τ≤n−1E)[n + 1]]

[G,Hn(E′)] [G, (τ≤n−1E′)[n + 1]].

λ∗

Hn( f )∗ ∼

µ∗

(A.5)

Since G ∈ G is an arbitrary generator, in order to prove that Hn( f ) is an isomorphism it is enough
to prove that Hn( f )∗ above is an isomorphism. We have just proved that µ∗ is an isomorphism,
so we are left to check that λ∗ is an isomorphism. To do so, consider the long exact sequence:

[G, (τ≤nE)[n]]→ [G,Hn(E)]
λ∗
−−→ [G, (τ≤n−1E)[n + 1]]→ [G, (τ≤nE)[n + 1]].

We need to show that both [G, (τ≤nE)[n]] = 0 and [G, (τ≤nE)[n + 1]] = 0. First, notice that

[G, (τ≤nE)[n]] � [G[−n], τ≤nE] � [G[−n], E] = 0

by hypothesis. Next, Consider the canonical distinguished triangle:

τ≤nE → E → τ≥n+1E,

and take the induced long exact sequence:

[G, (τ≥n+1E)[n]]→ [G, (τ≤nE)[n + 1]]→ [G, E[n + 1]].

By assumption, [G, E[n + 1]] = 0, and

[G, (τ≥n+1E)[n]] � [G[−n], τ≥n+1E] = 0,

since G[−n] ∈ T≤n and τ≥n+1E ∈ T≥n+1. We finally conclude that

[G, (τ≤nE)[n + 1]] = 0,

as claimed, which shows that λ∗ is an isomorphism as desired. The proof is now complete. �

Let us now have a closer look at the derived injectives of the derived category D(R), where R
is a fixed k-dg-algebra concentrated in nonpositive degrees. We first discuss a variant of Lemma
A.1 which follows from the classical Baer criterion for injectivity [5].

Lemma A.3. Let I ∈ D(R)♥ = Mod(H0(R)). Then, I is injective if and only if

D(R)(Z[−1], I) � 0,

for all Z ∈ D(R)♥ which admit an epimorphism H0(R)� Z.

Proof. The necessity of the condition is a particular case of the above Lemma A.1.
On the other hand, we take an object I ∈ D(R)♥ which satisfies the above condition. We may

check injectivity of I using the Baer criterion. Indeed, it is enough to prove that, given an exact
sequence

0→ B→ H0(R)→ Z → 0,
in Mod(H0(R)), the induced morphism

Mod(H0(R))(H0(R), I)→ Mod(H0(R))(B, I)

is surjective. The above short exact sequence induces a distinguished triangle

Z[−1]→ B→ H0(R)→ Z.
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We take the induced long exact sequence:

D(R)(H0(R), I)→ D(R)(B, I)→ D(R)(Z[−1], I).

By hypothesis, D(R)(Z[−1], I) � 0, and since we may identify

D(R)(B, I) � Mod(H0(R))(B, I),

D(R)(H0(R), I) � Mod(H0(R))(H0(R), I),

we conclude. �

We can now prove a result which resembles a “Baer-like” criterion for derived injectivity:

Corollary A.4 (“Baer criterion” for derived injectivity). Let E ∈ D(R). The following are equiv-
alent:

(1) E is derived injective (Definition 2.3.2).
(2) E ∈ D(R)≥0 and for all objects Z ∈ D(R)♥ which admit an epimorphism H0(R)� Z, we

have:

D(R)(Z[−n], E) = 0 (A.6)

for all n > 0.
(3) E ∈ D(R)≥0 and for all objects Z ∈ D(R)♥ which admit an epimorphism H0(R)� Z, we

have:

D(R)(Z[−1], E) = 0,

D(R)(H0(R)[−n], E) = 0, n > 1.
(A.7)

Proof. (1)⇒ (2) is a particular case of Proposition A.2; (2)⇒ (3) is straightforward (of course,
H0(R) admits an epimorphism H0(R)→ H0(R)).

Let us now prove (3) ⇒ (1). From the condition D(R)(Z[−1], E) � 0 (for Z ∈ D(R)♥ which
admits an epimorphism H0(R) � Z) we can prove that H0(E) is injective. Indeed, we take the
canonical distinguished triangle:

H0(E)→ E → τ≥1E,

and for Z ∈ T♥ which admits an epimorphism H0(R) � Z we have the induced long exact
sequence:

T(Z[−1], (τ≥1E)[−1])→ T(Z[−1],H0(E))→ T(Z[−1], E).

We have T(Z[−1], (τ≥1E)[−1]) � T(Z, τ≥1E) � 0, and T (Z[−1], E) � 0 by hypothesis and thus
T(Z[−1],H0(E)) � 0. Then, we can invoke the above Lemma A.3 and conclude that H0(E) is
injective, as claimed. Now, the result easily follows from Proposition A.2. �

Remark A.5. The Baer criterion characterizing derived injectives in D(R) (cf. Corollary A.4) can
be easily generalized to the “several objects” case, that is, to a criterion for derived injectivity
in D(a), where a is a small k-linear dg-category concentrated in nonpositive degrees. The proof
is parallel to the one we have provided for the single-object case; notice that in the proof of
Lemma A.3 one needs to replace the classical Baer criterion for categories of modules over a
ring with its generalization to any Grothendieck category [1, Prop 1.14].
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