
UNIQUENESS OF DG-LIFTS VIA RESTRICTION TO INJECTIVE OBJECTS
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Abstract. We prove a uniqueness result of dg-lifts for the derived pushforward and pullback
functors of a flat morphism between separated Noetherian schemes, between the unbounded or
bounded below derived categories of quasi-coherent sheaves. The technique is purely algebraic-
categorical and involves reconstructing dg-lifts uniquely from their restrictions to the subcate-
gories of injective objects.

Introduction

Triangulated categories, and in particular derived categories, are now a classical tool in homo-
logical algebra, with many relevant applications to algebraic geometry - typically, with derived
categories of sheaves on a given scheme.

It is well-known that, from a theoretical point of view, triangulated categories are far from
being well-behaved: there is no sensible way to define a “triangulated category of triangulated
functors between triangulated categories” or a tensor product [4, §3]. Problems arise essentially
from the failure of functoriality of mapping cones.

The solution to this issue is to consider enhancements of triangulated categories: namely,
viewing them as shadows of more complicated structures. There are many possible choices of
enhancements, among which differential graded (dg) categories are one of the most popular.

A dg-category is a category enriched over chain complexes over some base commutative ring
or field. Chain complexes have a homotopy theory, and this yields a homotopy theory of dg-
categories themselves [29] [30]. A very basic feature of this is that, given a dg-category A,
we may define its homotopy category H0(A) by taking the same objects of A and the zeroth
cohomology of the hom complexes. Quite more complicated is to describe “homotopically rele-
vant” functors between dg-categories, which we call quasi-functors. A quasi-functor F : A→ B

yields a genuine functor H0(F) : H0(A) → H0(B); quasi-functors can be concretely described
in a variety of ways, including particular dg-bimodules [8] and A∞-functors [6].

A dg-category is pretriangulated [3] essentially if it is closed under taking shifts and cones,
which are now functorial, in contrast to what happens in triangulated categories. If A is a
pretriangulated dg-category, its homotopy category H0(A) has a natural structure of triangulated
category.

It is now very natural to ask whether a given triangulated category can be “upgraded” to a
pretriangulated dg-category. More precisely, a dg-enhancement of a triangulated category T

is a pretriangulated dg-category A such that H0(A) is equivalent to T. It is not very hard to
show that most triangulated categories arising in algebraic geometry (namely, derived categories
of (quasi)-coherent sheaves or relevant subcategories thereof) have a dg-enhancement, and it
is indeed not trivial to find examples of triangulated categories without a dg-enhancement –
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which anyway exist even over a field [25]. Also quite challenging is to prove whether such
dg-enhancements are unique or not (up to quasi-equivalence, i.e. “invertible quasi-functors”).
Recently, uniqueness has been proved for all sorts of derived categories of abelian categories [5],
improving previous results [10] [21]; see also the survey [9]. A counterexample to uniqueness
over a base field was given in [24].

Another natural question we might now ask is whether triangulated functors between trian-
gulated categories can also be “upgraded” to quasi-functors between dg-enhancements. More
precisely, given pretriangulated dg-categories A, B and a functor T : H0(A) → H0(B), a dg-lift
of T is a quasi-functor F : A→ B such that H0(F) is isomorphic to T . We say that the dg-lift F
is unique if it uniquely determined up to isomorphism of quasi-functors.

The relevance of the problem of existence and uniqueness of dg-lifts stems from its connection
to the problem of existence and uniqueness of Fourier-Mukai kernels of triangulated functors
between derived categories of sheaves on schemes, as explained in [22] (see also §2.4.2). In
a nutshell, finding (unique) dg-lifts of direct sum-preserving triangulated functors of the form
D(QCoh(X)) → D(QCoh(Y)), for suitable schemes X and Y , is the same problem as finding
(unique) Fourier-Mukai kernels of such functors. This key idea was essentially the starting
point of [12]. The survey [9] contains an account on further positive and negative answers to
the problem. More recently, counterexamples to existence of Fourier-Mukai kernels (hence of
dg-lifts) have been given, even when X and Y are smooth projective schemes [26] [23] [19].

In this paper, we give a positive uniqueness result of dg-lifts which applies to derived pushfor-
ward and pullback functors between unbounded or bounded below derived categories of quasi-
coherent sheaves:

Theorem (Theorem 2.6, Theorem 2.7, Corollary 2.9). Let X and Y be separated Noetherian
schemes over a field and let f : X → Y be a flat morphism.

Then, the derived pushforward an pullback functors

R f∗ : D(QCoh(X))→ D(QCoh(Y)), f ∗ : D(QCoh(Y))→ D(QCoh(X)),

(R f∗)+ : D+(QCoh(X))→ D+(QCoh(Y)), ( f ∗)+ : D+(QCoh(Y))→ D+(QCoh(X)),

have unique dg-lifts.
In particular, if X and Y are quasi-projective, the functors

R f∗ : D(QCoh(X))→ D(QCoh(Y)), f ∗ : D(QCoh(Y))→ D(QCoh(X))

admit unique Fourier-Mukai kernels.

The proof of the above result, given in §2, uses completely algebraic-categorical techniques,
with the following key idea. The assumption that f : X → Y is flat ensures that the pull-
back functor f ∗ : QCoh(Y) → QCoh(X) is exact, so that the induced triangulated functor
f ∗ : D(QCoh(Y)) → D(QCoh(X)) is t-exact with respect to the natural t-structures on the given
derived categories. Then, we may essentially prove that any dg-lift of R f∗ is uniquely deter-
mined by its restriction to the subcategory of injective objects of QCoh(X), and this restriction
actually maps such subcategory of injectives to the subcategory of injective objects of QCoh(Y).
Hence, any dg-lift of R f∗ is uniquely determined by an ordinary functor, whence the uniqueness.
Uniqueness of dg-lifts of the pullback f ∗ easily follows from the fact that f ∗ is left adjoint to
R f∗.

An important tool in the proof is the homotopy category of injectives K(Inj(QCoh(X))) and its
relationship to D(QCoh(X)) as explained in [18]. Technically, the hardest part is understanding
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how to extend quasi-functors from (the chosen dg-enhancement of) the bounded below homo-
topy category K+(Inj(QCoh(X))) to K(Inj(QCoh(X))). This is done using brutal truncations,
which after all seem to be better behaved than expected, from a certain dg-functorial point of
view – details of this are discussed in §3.

We end this introduction by remarking that, when X ane Y are projective over a field, unique-
ness of Fourier-Mukai kernels of the derived pushforward and pullback functors follow also
from a straightforward variant of [7, Corollary 4.4].

Acknowledgements. The author thanks Alberto Canonaco and Paolo Stellari for answering
questions about the feasibility of the main argument of this paper, ultimately encouraging its
creation.

1. Preliminaries

We fix once and for all a ground field k. Every category will be k-linear and every scheme will
be over Spec(k). We will sometimes use the expression “k-module” as a synonim for “k-vector
space”.

We will disregard set-theoretical issues by implicitly fixing Grothendieck universes when
needed.

1.1. Dg-categories and quasi-functors. Throughout this paper, we will use triangulated cat-
egories and differential graded (dg) categories as their enhancements. We assume the reader
to be acquainted with these topics. We refer to [17] for a general survey on dg-categories; the
preliminary sections of [15] [16] [14] may also be useful. Here, we just fix the notation and list
the definitions and results which we strictly need.

Definition 1.1. A dg-category A is a category enriched over the closed symmetric monoidal of
chain complexes of k-modules.

For any dg-category A, we may define the homotopy category H0(A).
For dg-categories A and B, we have the tensor product A ⊗ B and the dg-category of dg-

functors Fundg(A,B).
There is a dg-category dgm(k) of complexes of k-modules. If A is a dg-category, we set

dgm(A) = Fundg(Aop, dgm(k)),

the dg-category of right A-dg-modules. Replacing A with Aop, we get the dg-category dgm(Aop)
of left A-dg-modules. We also have the dg-category dgm(B ⊗Aop) of A-B-dg-bimodules. Such
dg-bimodules can be identified with dg-functors

A→ dgm(B).

If A is a dg-category, we may define its derived dg-category Ddg(A) by taking the full dg-
subcategory of Cdg(A) of h-projective dg-modules. Then, we identify

H0(Ddg(A)) = D(A).

where D(A) is the derived category of A, obtained by localizing H0(dgm(A)) along quasi-
isomorphisms.
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For any dg-category A, we have the dg-Yoneda embedding

A ↪→ dgm(A),
A 7→ A(−, A).

This induces the derived-dg Yoneda embedding

A ↪→ Ddg(A)

and the derived Yoneda embedding

H0(A) ↪→ D(A)

by taking H0(−).

Dg-categories can be used as enhancements of triangulated categories:

Definition 1.2. A dg-category A is pretriangulated [3] [4] if the dg-Yoneda embedding

A ↪→ dgm(A)

induces a quasi-equivalence with the smallest full dg-subcategory of dgm(A) containing the
image of A and closed under taking shifts and mapping cones. If A is pretriangulated, the
homotopy category H0(A) has a natural triangulated structure.

A dg-enhancement of a triangulated category T is a pretriangulated dg-category A such that
H0(A) is equivalent to T:

H0(A) � T.

1.1.1. Quasi-functors. By localizing the category of (small) dg-categories along quasi-equivalences
we obtain the homotopy category of dg-categories Hqe [29]. Since we are working on a base
field, the tensor product of dg-categories need not be derived and induces a symmetric monoidal
structure on Hqe.

An important theorem [30] tells us that the symmetric monoidal category Hqe is closed,
namely, it has an internal hom. For given dg-categories A and B, such internal hom will be
denoted by

RHom(A,B). (1.1)

Objects of this dg-category are called quasi-functors. Concretely, quasi-funtors can be described
as suitable dg-bimodules [8]. Thus, a quasi-functor

F : A→ B

will be for us a dg-functor A→ dgm(B) (namely, an A-B-dg-bimodule) with the property that,
for any object A ∈ A, there is an object ΦF(A) ∈ B and a quasi-isomorphism

B(−,ΦF(A))→ F(A).

A quasi-functor F : A→ B induces a genuine functor

H0(F) : H0(A)→ H0(B),
A 7→ ΦF(A).

(1.2)

If F and G are quasi-functors, we may define a morphism

φ : F → G (1.3)
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as a morphism in H0(RHom(A,B)), which in particular is an isomorphism in the derived cate-
gory of dg-bimodules D(B ⊗Aop). Concretely, φ can be represented by a zig-zag

F
∼
←− H → G,

where H
∼
−→ F is a quasi-isomorphism of A-B-dg-bimodules.

We say that φ is an isomorphism if it is an isomorphism in H0(RHom(A,B)). More con-
cretely, an isomorphism can be represented by a zig-zag

F
∼
←− H

∼
−→ G,

where both arrows are quasi-isomorphisms. We will write

F � G (1.4)

for isomorphic quasi-functors.
We can now discuss dg-lifts. If A and B are pretriangulated dg-categories and T : H0(A) →

H0(B) is a triangulated functor, a dg-lift of T is a quasi-functor F : A→ B such that

H0(F) � T. (1.5)

If F is uniquely determined up to isomorphism of quasi-functors, we will say that the dg-lift is
unique. Uniqueness of dg-lifts is the main topic of this paper.

1.1.2. Opposite quasi-functors and adjoints. The claims in this part follow from the results in
[13].

Let F : A→ B be a quasi-functor. By using a suitable duality operation, we are able to define
the opposite quasi-functor

Fop : Aop → Bop. (1.6)

Essentially (and forgetting about h-projective resolutions, of both quasi-functors and dg-categories)
we define a B-A-dg-bimodule D(F) as follows:

D(F)(A, B) = dgm(B)(FA,B(−, B)).

Since F is a quasi-functor, we deduce [13, Proposition 5.9] that D(F) is left quasi-representable,
namely, for any object A ∈ A we have a quasi-isomorphism:

B(ΦF(A),−)
∼
−→ D(F)(A,−).

This actually means that D(F) can be identified with a quasi-functor

Fop : Aop → Bop,

as we claimed.
If

φ : F → G

is a morphism of quasi-functors, by taking opposite we get a morphism

φop : Gop → Fop (1.7)

We also remark that taking opposites quasi-functors yields an involution:

(Fop)op � F,

(φop)op
= φ : F → G.

(1.8)
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1.2. t-structures and derived injectives. We will work with t-structures on triangulated cate-
gories and their dg-enhancements. If A is a pretriangulated dg-category, a t-structure on A is just
a t-structure on H0(A) in the sense of [1]. A quasi-functor F : A → B between pretriangulated
dg-categories with t-structures is (left or right) t-exact if H0(F) is (left or right) t-exact.

T-structures allow us to extend the theory and features of abelian categories to the derived
framework. In particular, we are able to define a more general notion of injective object:

Definition 1.3 ([26, §5.1], [15]). Let T be a triangulated category with a t-structure, and let I ∈
Inj(T♡) be an injective object in the heart T♡ of the t-structure. The derived injective associated
to I is an object L(I) ∈ T such that there is an isomorphism of functors

T♡(H0(−), I) � T(−, L(I)).

We say that an object E ∈ T is a derived injective if it is of the form L(I) for some injective
object I ∈ T♡.

Remark 1.4. If A is a pretriangulated dg-category endowed with a t-structure, we may define
a dg-category of derived injectives DGInj(A) as the full dg-subcategory of A spanned by the
derived injective objects. This dg-category is cohomologically concentrated in nonpositive de-
grees.

Derived injectives are used in [15] to prove a reconstruction result for t-structures in terms
of twisted complexes of derived injectives and in [16] as tool to prove a version of the Gabriel-
Popescu theorem for pretriangulated dg-categories endowed with t-structures.

Here, we will not actually need the general theory and concentrate just on more classical
derived categories. It turns out that, in that case, derived injectives are just the same as the
ordinary injective objects:

Lemma 1.5. Let A be a Grothendieck abelian category, and let Ddg(A) be its derived dg-
category, i.e. a chosen (unique [10] [5]) dg-enhancement of the derived category D(A). We
shall make the identification H0(Ddg(A)) = D(A).

Then, derived injectives of Ddg(A) coincide with the injectives in A. In particular, the dg-
category DGInj(Ddg(A)) is cohomologically concentrated in degree 0 and it is henceforth quasi-
equivalent to the k-linear category Inj(A).

Proof. For simplicity, we denote by [−,−] the hom spaces in D(A). Let I ∈ Inj(A). We want to
prove that there is a natural isomorphism

[X, I] � [H0(X), I]

for all X.
First, we have [X, I] � [τ≥0X, I] since I lies in A which is the heart of the t-structure of D(A).

Then, consider the (functorial) distinguished triangle

H0(X)→ τ≥0X → τ≥1X.

Composing with H0(X)→ τ≥0X, we get a morphism

[τ≥0X, I]→ [H0(X), I]

To check that this is an isomorphism, it is enough to prove that

[τ≥1X, I] = 0 and [(τ≥1X)[−1], I] = 0.



UNIQUENESS OF DG-LIFTS VIA RESTRICTION TO INJECTIVE OBJECTS 7

This follows from the fact that I being injective implies that

[Y, I] = K(A)(Y, I)

for Y concentrated in nonnegative degrees, where K(A) is the homotopy category of A.
The last part of the claim can be proved as follows: if I, J are two injective objects (which are

also derived injective thanks to the above argument), we have for i > 0:

H−i(Ddg(A)(I, J)) � D(A)(I[i], J)

� A(Hi(I),H0(J))
� 0,

recalling that Hi(I) = 0 since i > 0 and J = H0(J). □

Remark 1.6. IfA is a Grothendieck abelian category, we can consider the dg-categories C+dg(Inj(A))
and Cdg(Inj(A)) of respectively bounded below and unbounded complexes of injective objects.
Thanks to the above Lemma 1.5 and compatibility with quasi-equivalences, such dg-categories
can be identified with the dg-categories of (bounded below or unbounded) twisted complexes of
derived injectives Tw+(DGInj(Ddg(A))) and Tw(DGInj(Ddg(A))). More details on dg-categories
of twisted complexes can be found in [15] (in the bounded case) and [14] (in the unbounded
case).

2. Results on uniqueness of dg-lifts

2.1. Setup. Let A and B be locally Noetherian Grothendieck abelian categories such that the
derived categories D(A) and D(B) are compactly generated. We know [5] [10] that such derived
categories have unique dg-enhancements Ddg(A) and Ddg(B), which we shall fix once and for
all. Moreover, we shall often make the following identifications:

H0(Ddg(A)) = D(A), H0(Ddg(B)) = D(B).

We fix a quasi-functor
F : Ddg(A)→ Ddg(B)

and we assume that it has both a left adjoint LF and a right adjoint RF , in the sense of adjoint
quasi-functors [13]. This is equivalent [16, Lemma 2.1.3] to requiring that H0(F) has both a left
and a right adjoint. Moreover, we assume that the left adjoint LF is t-exact with respect to the
canonical t-structures on Ddg(A) and Ddg(B). Thanks to [16, Proposition 2.3.10] and Lemma
1.5, we know that F maps Inj(A) to Inj(B).

For simplicity, we set IA = Inj(A) and IB = Inj(B). We denote by Cdg(IA) and Cdg(IB) the dg-
categories of complexes over IA and IB. They are dg-enhancements of the homotopy category
of injectives K(Inj(A)) and K(Inj(B)). Our assumptions on A and B guarantee that Inj(A) and
Inj(B) are closed under arbitrary direct sums in A and B. Hence, Cdg(IA) and Cdg(IB) have
arbitrary (strict) direct sums, taken termwise.

Under our assumptions, [18, Corollary 4.3] and the theory of dg-quotients [11] yield local-
izations at the dg-level

Cdg(IA) Ddg(A),

Cdg(IB) Ddg(B).
(2.1)
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The localization quasi-functors δA : Cdg(IA) → Ddg(A) and δB : Cdg(IB) → Ddg(B) have both
quasi-fully faithful (i.e fully faithful after taking H0) left and right adjoints:

qA ⊣ δA ⊣ rA, qB ⊣ δB ⊣ rB. (2.2)

We also set:
F′l = qB ◦ F ◦ δA : Cdg(IA)→ Cdg(IB). (2.3)

Being a composition of left adjoint quasi-functors, this is also a left adjoint quasi-functor. In
particular, it is cocontinuous (namely, its H0 preserves arbitrary direct sums).

We now denote by C+dg(IA) the full dg-subcategory of Cdg(IA) spanned by complexes (strictly)
bounded from below; we also denote by D+(IA) the usual full dg-subcategory of Ddg(A) spanned
by complexes cohomologically bounded from below. We may give analogous definitions for B.
We shall denote by

iA : D+dg(A)→ Ddg(A),

i′
A

: C+dg(IA)→ Cdg(IA)
(2.4)

the inclusion dg-functors.
We also recall the well-known result that the localization quasi-functor δA : Cdg(IA)→ Ddg(A)

restricts to a quasi-equivalence (i.e. an equivalence after taking H0):

δ+
A

: C+dg(IA)
∼
−→ D+dg(A).

We can put our data in the following diagram:

C+dg(IA) Cdg(IA) Cdg(IB)

D+dg(A) Ddg(A) Ddg(B).

i′
A

F′l

δ+
A

iA F

δA δB (2.5)

This diagram is commutative up to isomorphism of quasi-functors. The left square is clearly
commutative; as for the right square, we compute:

δBF′l = δBqBFδA
� FδA,

because qB is quasi-fully faithful and the unit morphism 1→ δBqB of the adjunction qB ⊣ δB is
an isomorphism of quasi-functors.

2.2. Uniqueness of dg-lifts in the bounded below case. A direct application of the “corre-
spondence” result [15, Theorem 1.4] gives us the following result (also recall Remark 1.6) :

Proposition 2.1. Let A and B be pretriangulated dg-categories endowed with non-degenerate
t-structures which are bounded from below: A+ = A and B+ = B. Moreover, assume that such t-
structures have enough derived injectives, and that the full dg-subcategories of derived injectives
are (cohomologically) concentrated in degree 0. In particular, they are quasi-equivalent to the
k-linear categories of injectives in the hearts.

Moreover, let
F,G : A→ B
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be quasi-functors admitting t-exact left adjoints. Then, if H0(F) � H0(G) as triangulated func-
tors H0(A)→ H0(B), we conclude that F � G as quasi-functors.

Proof. From H0(F) � H0(G) we deduce that H0(F|DGInj(A)) � H0(G|DGInj(A)), which we can
view as functors H0(DGInj(A))→ H0(DGInj(B)). Now, by hypothesis we can identify

H0(DGInj(A)) = DGInj(A), H0(DGInj(B)) = DGInj(B).

With this identifications, we have H0(F|DGInj(A)) � F|DGInj(A) and H0(G|DGInj(A)) � G|DGInj(A)

(quasi-functors between k-linear categories can be identified with their H0). Hence, we have
F|DGInj(A) � G|DGInj(A) as quasi-functors DGInj(A) → DGInj(B), from which we conclude that
F � G applying [15, Theorem 1.4]. □

We immediately deduce the following direct consequence:

Corollary 2.2. Let F,G : Ddg(A)→ Ddg(B) as in the setup §2.1. Being right adjoints of t-exact
quasi-functors, they are left t-exact [16, Proposition 2.2.7], hence they induce quasi-functors

F+,G+ : D+dg(A)→ D+dg(B).

If H0(F+) � H0(G+) then F+ � G+ as quasi-functors.

2.3. Uniqueness of dg-lifts in the unbounded case. We now state the main result of the paper.

Theorem 2.3. Let F,G : Ddg(A) → Ddg(B) be quasi-functors as in the setup §2.1. Then, if
H0(F) � H0(G), we conclude that F � G.

Proof. We first check that F � G is actually equivalent to F′l � G′l . Indeed, we have by defini-
tion:

F′l = qBFδA, G′l = qBFδA.

From this, we deduce:

δBF′l rA = δBqBFδArA
� F,

because δBqB � 1 and δArA � 1, since qB and rA are fully faithful and part of the adjunctions
qB ⊣ δB and δA ⊣ rA. Analogously, we have:

δBG′lrB � G.

From this, it is immediate to see that F � G if and only if F′l � G′l .
Now, we apply Corollary 2.2 and conclude that F+ � G+ as quasi-functors D+dg(A)→ D+dg(B).

This implies that (it is actually equivalent to)

qBiBF+ � qBiBG+ : D+dg(A)→ Cdg(IB),

where iB : D+dg(B)→ Ddg(B) is the inclusion and qB is the quasi-fully faithful left adjoint to the
localization δB : Cdg(IB)→ Ddg(B). Clearly, F+ and G+ satisfy

iBF+ � FiA, iBG+ � GiA,

so we deduce
qBFiA � qBGiA : D+dg(A)→ Cdg(IB).
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We now precompose with the quasi-equivalence δ+
A

: C+dg(IA)
∼
−→ D+dg(A) and deduce:

qBFiAδ+A � qBGiAδ+A : C+dg(IA)→ Cdg(IB)

Recalling (2.5) we have an isomorphism iAδ+A � δAi′
A

, so we obtain

qBFδAi′
A
� qBGδAi′

A
,

which actually means
F′l i
′
A
� G′l i

′
A

: C+dg(A)→ Cdg(B).

We would like to conclude from this that indeed F′l � G′l , from which we would finally
get F � G thanks to the first part of the proof. This is the really technical part of the proof,
which we postpone to §3 and Proposition 3.1. Before doing that, we will present in §2.4 some
applications. □

2.4. Applications. Theorem 2.3 has interesting applications to algebraic geometry. Before div-
ing into that, we prove an easy result which ensures that uniqueness of dg-lifts is “trasmitted to
adjoints”.

Lemma 2.4. Let A and B be pretriangulated dg-categories and let F,G : A → B be quasi-
functors. Moreover, assume that H0(F) and H0(G) have a left adjoint (or a right adjoint). This
implies [16, Lemma 2.1.3] [20, Remark 3.9] that both F and G have left adjoints Fl and Gl (or
right adjoints Fr and Gr) and their H0 yield adjoints of H0(F) and H0(G).

Then, the following are equivalent:

(1) H0(F) � H0(G) implies F � G as quasi-functors.
(2) H0(Fl) � H0(Gl) implies Fl � Gl as quasi-functors.

The same result with right adjoints. The following are equivalent:

(1) H0(F) � H0(G) implies F � G as quasi-functors.
(2) H0(Fr) � H0(Gr) implies Fr � Gr as quasi-functors.

Proof. Let us assume (1) in the case of left adjoints. If H0(Fl) � H0(Gl), we conclude that
H0(F) � H0(G) by uniqueness of (right) adjoints. Hence, by assumption, we have F � G. But
again, adjoint quasi-functors are unique up to isomorphism, so we immediately conclude that
Fl � Gl.

The other parts of the proof follow from a similar argument and are left to the reader. □

2.4.1. Uniqueness of dg-lifts. Here, we will work with separated Noetherian schemes, so that
we fall in the framework of our setup §2.1. Indeed, if X is a separated Noetherian scheme, the
category QCoh(X) is a locally Noetherian Grothendieck abelian category such that D(QCoh(X))
is compactly generated (see [18] and [2, Theorem 3.1.1]). Morever, the natural functor

D(QCoh(X))→ Dqc(X)

is an equivalence (cf. [28, 09TN]). Dqc(X) denotes the full subcategory of D(X) = D(Mod(OX))
spanned by complexes with quasi-coherent cohomology. By construction (cf. [28, 06UP]) this
equivalence can be also described as a quasi-functor

Ddg(QCoh(X))
∼
−→ Ddgqc(X). (2.6)
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Here Ddgqc(X) denotes the full dg-subcategory of Ddg(X) = Ddg(Mod(OX)) spanned by com-
plexes with quasi-coherent cohomology. We recall that, thanks to the results in [5], every dg-
enhancement we have written so far is unique up to isomorphism in Hqe.

Let f : X → Y be a flat morphism of separated Noetherian schemes. We have the induced
pushforward and pullback functors

f∗ : QCoh(X)→ QCoh(Y), f ∗ : QCoh(Y)→ QCoh(X).

By our flatness assumption f ∗ is exact, hence it induces a t-exact functor

f ∗ : D(QCoh(Y))→ D(QCoh(X)).

We also have a derived pushforward functor

R f∗ : D(QCoh(X))→ D(QCoh(Y)).

The derived pullback and pushforward are adjoint to each other:

f ∗ ⊣ R f∗ : D(QCoh(Y))⇆ D(QCoh(X)).

Morever, we know [28, 0A9E] that R f∗ also has a right adjoint f ×.

Lemma 2.5. The above triangulated functors can all be lifted to the differential graded frame-
work. Namely, there exist quasi-functors

R f̃∗ : Ddg(QCoh(X))→ Ddg(QCoh(Y)),

f̃ ∗ : Ddg(QCoh(Y))→ Ddg(QCoh(X)),

f̃ × : Ddg(QCoh(Y))→ Ddg(QCoh(X)),

whose H0 yield respectively R f∗, f ∗, f ×, after identifying H0(Ddg(QCoh(?))) = D(QCoh(?)).

Proof. This can be proved using the results in [27], after identifying Ddg(QCoh(?)) = Ddgqc(?).
In particular, one can find a lift R f̃∗ of R f∗. Then, applying [16, Lemma 2.1.3] we can find f̃ ∗

and f̃ × as left and right adjoint quasi-functors of R f̃∗, which exist since H0(R f̃∗) = R f∗ has left
and right adjoints f ∗ and f ×. □

We can now apply Theorem 2.3 to get the following uniqueness result:

Theorem 2.6. Let X and Y be separated Noetherian schemes and let f : X → Y be a flat
morphism.

Let F,G be quasi-functors between Ddg(QCoh(X)) and Ddg(QCoh(Y)) (or vice-versa) such
that H0(F) � H0(G) is isomorphic to one of the functors R f∗, f ∗, f ×. Then, F � G as quasi-
functors. In other words, dg-lifts of R f∗, f ∗, f × are unique.

Proof. Uniqueness of dg-lifts for R f∗ follows directly from Theorem 2.3. Uniqueness of dg-lifts
for its adjoints f ∗ and f × follows directly from Lemma 2.4. □

The functor f ∗ is t-exact and its right adjoint R f∗ is left t-exact (see also [16, Proposition
2.2.7]). Hence, they directly restrict to functors

( f ∗)+ : D+(QCoh(Y))→ D+(QCoh(X)),

(R f∗)+ : D+(QCoh(X)→ D+(QCoh(Y)).
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We also have dg-lifts

( f̃ ∗)+ : D+dg(QCoh(Y))→ D+dg(QCoh(X)),

(R f̃∗)+ : D+dg(QCoh(X)→ D+dg(QCoh(Y)).

We can also prove a dg-lift uniqueness result for functors between bounded below derived cate-
gories:

Theorem 2.7. Let X and Y be separated Noetherian schemes and let f : X → Y be a flat
morphism.

Let F,G be quasi-functors between D+dg(QCoh(X)) and D+dg(QCoh(Y)) (or vice-versa) such
that H0(F) � H0(G) is isomorphic to one of the functors (R f∗)+, ( f ∗)+. Then, F � G as quasi-
functors. In other words, dg-lifts of (R f∗)+, ( f ∗)+ are unique.

Proof. This follows immediately from Corollary 2.2. □

2.4.2. Uniqueness of Fourier-Mukai kernels. It is well-known that the uniqueness problem of
dg-lifts is essentially the same as the uniqueness problem of Fourier-Mukai kernels of triangu-
lated functors between derived categories of schemes (cf. [9]).

More precisely, we first recall [30, Theorem 8.9] which yields an isomorphism in Hqe:

Ddg(QCoh(X × Y))
∼
−→ RHomc(Ddg(QCoh(X)),Ddg(QCoh(Y)), (2.7)

where RHomc denotes the dg-category of cocontinuous quasi-functors, namely, quasi-functors
whose H0 preserves small direct sums. Then, we use [22, Theorem 1.1] which yields under
suitable hypotheses a commutative diagram (up to isomorphism):

D(Qcoh(X × Y)) H0(RHomc(Ddg(QCoh(X)),Ddg(QCoh(Y)))

Fun(D(QCoh(X)),D(QCoh(Y))).

∼

ΦX→Y
−

H0(−) (2.8)

The functor ΦX→Y
− maps an element E ∈ D(Qcoh(X × Y)) to the Fourier-Mukai functor with

kernel E:
ΦX→Y
E

(−) = R(p2)∗(E
L
⊗ p∗1(−)),

where p1 : X × Y → X and p2 : X × Y → Y are the natural projections. On the other hand, the
vertical H0(−) functor maps a quasi-functor to its zeroth cohomology functor.

Remark 2.8. The hypotheses which ensure the existence of the commutative diagram (2.8) are
as follows: X and Y are Noetherian separated schemes, X × Y is Noetherian and both X and Y
have the following property: any perfect complex is isomorphic to a strictly perfect complex.

We remark that those hypotheses are satisfied if both X and Y are quasi-projective.

We can now immediately translate Theorem 2.6 to a uniqueness result of Fourier-Mukai ker-
nels:

Corollary 2.9. Let X and Y be as in the above Remark 2.8, and let f : X → Y be a flat morphism.
Let E1,E2 ∈ D(QCoh(X × Y) be such that

ΦX→Y
E1
� ΦX→Y

E2
� R f∗.

Then, E1 � E2.
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Analogously, let E1,E2 ∈ D(QCoh(Y × X) be such that

ΦY→X
E1
� ΦY→X

E2
� f ∗.

Then, E1 � E2.
In other words, both functors R f∗ and f ∗ admit unique Fourier-Mukai kernels.

3. Extending natural isomorphisms

The goal of this section is to show that we can extend data (which will be, in our case, a nat-
ural isomorphism of quasi-functors) from C+dg(IA) to the dg-category of unbounded complexes
Cdg(IA).

3.1. The result. We will work in a slightly greater generality than the setup in §2.1. We fix
a k-linear category I closed under countable direct sums, a pretriangulated dg-category B such
that H0(B) has countable direct sums, and moreover quasi-functors

F,G : Cdg(I)→ B.

such that H0(F) and H0(G) preserve countable direct sums. We also set:

F0 = F ◦ i′,G0 = G ◦ i′,

where i′ : C+dg(I) ↪→ Cdg(I) is the inclusion dg-functor.
We want to prove the following:

Proposition 3.1. Let φ0 : F0
∼
−→ G0 be an isomorphism of quasi-functors. Then, φ0 can be

extended to an isomorphism of quasi-functors

φ : F
∼
−→ G.

such that φ ◦ i′ = φ0.

Remark 3.2. If F and G are left adjoint quasi-functors (which is equivalent to requiring that
H0(F) and H0(G) are left adjoints, see [16, Lemma 2.1.3]) then clearly H0(F) and H0(G) pre-
serve direct sums.

We recall that an isomorphism of quasi-functors F0
∼
−→ G0 can be described as a zig-zag of

quasi-isomorphisms of dg-bimodules:

F0
∼
←− H0

∼
−→ G0.

Hence, our task is to find a similar zig-zag of quasi-isomorphisms

F
∼
←− H

∼
−→ G

for a suitable H. This will need some technical efforts and will be dealt with in steps, in the
following parts of this subsection.
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3.2. Brutal truncations. If X• is an object in Cdg(I), we can define its brutal truncations X•≤n
and X•≥n (for n ∈ Z) simply by:

X≤n = · · · → Xn−1 → Xn → 0→ 0→ · · · ,

X≥n = · · · → 0→ 0→ Xn → Xn+1 → · · ·

There are obvious “projection” and “inclusion” degree 0 morphisms:

pn+1,n : X•≤n+1 → X•≤n, in,n+1 : X•≤n → X•≤n+1,

s−n−1,−n : X•≥−n−1 → X•≥−n, j−n,−n−1 : X•≥−n → X•≥−n−1.
(3.1)

pn+1,n and j−n,−n−1 are closed, but s−n−1,−n and in,n+1 are (in general) not. We also have closed
degree 0 morphisms

pn : X• → X•≤n, j−n : X•≥−n → X•. (3.2)

We can easily check that X• with the pn is the limit of the system (pn+1,n)n and that itself with
the j−n is the colimit of the system ( j−n,−n+1)n (even restricting to n ∈ N):

X• � lim
←−−
n≥0

X≤n, X• � lim
−−→
n≥0

X≥−n. (3.3)

For more details in the more general setting of twisted complexes, see [14, §2].
We remark that brutal truncations are not functorial. If f : X• → Y• is any morphism in

Cdg(I), we can define morphisms f≤n : X•≤n → Y•≤n and f≥n : X•≥n → X•≥n in the obvious way, but
the mappings f 7→ f≤n and f 7→ f≥n will not be well-behaved with respect to compositions and
differentials. An exception to this is achieved when we restrict to closed degree 0 morphisms,
see also [14, Remark 2.8].

3.3. Extending dg-functors to unbounded complexes. The formulas (3.3) hint that the lost
dg-functoriality of brutal truncations might be recovered “to the limit”. This is the key idea
behind the following result, which allows us to extend dg-functors defined on C+dg(I) to the dg-
category of unbounded complexes Cdg(I). For technical reasons which we be clearer later on,
we write down a dual result involving C–

dg(P), where P = Iop.

Proposition 3.3. Let D be a dg-category having strictly dg-functorial sequential limits (of se-
quences of closed degree 0 morphisms), and let

F0 : C–
dg(P)→ D

be a dg-functor. Then, there exists a dg-functor

F : Cdg(P)→ D

defined on objects by
F(X•) = lim

←−−
n≥0

F0(X•≤n)

which extends F.
We shall sometimes denote such dg-functor F as

lim
←−−
n≥0

F0(−≤n). (3.4)
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Proof. We need to define F on morphisms and check that it is indeed a dg-functor. This will
need some care, because brutal truncations are not by themselves functorial. Fortunately, taking
limits resolves this issue.

Let f : X• → Y• be a degree p morphism in Cdg(P). We may view it as a degree 0 morphism
f : X• → Y•[p]. Brutal truncations are a bit nicer when applied to degree 0 morphisms: for
n ∈ Z we obtain a degree 0 morphism

fn : X•≤n → (Y•[p])≤n = Y•≤n+p[p],

which we may view as a degree p morphism fn : X•≤n → Y•≤n+p. The components

( fn)i+p
i : Xi → Y i+p

of fn are easily described as follows:

( fn)i+p
i = f i+p

i if i ≤ n, ( fn)i+p
i = 0 if i > n. (3.5)

The morphisms fn are compatible with the directed system

(pX
n+1,n : X•≤n+1 → X•≤n)n

and the “shifted” directed system

(pY
n+p+1,n+p : Y•≤n+p+1 → Y•≤n+p)n

(cf. (3.1)). Namely, the following diagram is commutative:

X•
≤n+1 Y•

≤n+p+1

X•≤n Y•≤n+p

fn+1

pX
n+1,n

fn

pY
n+p+1,n+p

(3.6)

for all n ∈ Z. This can be checked directly using (3.5) or by identifying fn with the degree 0
morphism X•≤n → (Y•[p])≤n.

Next, we may define F( f ) essentially as

F( f ) = lim
←−−
n≥0

F0( fn).

More precisely, F( f ) is the unique degree p morphism which makes the following diagram
commute for all n ≥ 0:

F(X•) F(Y•)

F0(X•≤n) F0(Y•≤n+p),

F( f )

prF,X
n

F0( fn)

prF,Y
n+p (3.7)

where we abused notation a little and identified

F(Y•) = lim
←−−
n≥0

F0(Y•≤n) = lim
←−−
n≥0

F0(Y•≤n+p),

together with the suitable projection morphisms prF,Y
n and prF,Y

n+p.
We now go on to check that F is indeed dg-functorial. k-linearity of f 7→ F( f ) is clear and

comes from the obvious k-linearity of f 7→ fn.
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Compatibility with differentials is a bit trickier. Let f : X• → Y• be a degree p morphism in
Cdg(P). First, we see that the commutative diagram (3.6) induces (for all n ∈ Z) the following
commutative diagram by taking differentials:

X•
≤n+1 Y•

≤n+p+1

X•≤n Y•≤n+p

d( fn+1)

pX
n+1,n

d( fn)

pY
n+p+1,n+p

(3.8)

We now compare the degree p + 1 morphisms d( fn) and (d f )n. We compute components (here
i ∈ Z):

d( fn)i+p+1
i = (dY•≤n+p

)i+p+1
i+p ( fn)i+p

i − (−1)p( fn)i+p+1
i+1 (dX•≤n

)i+1
i ,

((d f )n)i+p+1
i = (dY•)

i+p+1
i+p f i+p

i − (−1)p f i+p+1
i+1 (dX•)i+1

i if i ≤ n, ((d f )n)i+p+1
i = 0 if i > n.

We see that for i < n and i > n the two above expressions are the same. For i = n, the first
expression is 0 whereas the second one is not. From this, we easily see that we have the identity

d( fn) = pY
n+p+1,n+p ◦ (d f )n. (3.9)

Taking differentials in (3.7) and using dg-functoriality of F0, we see that the morphism dF( f ) is
the unique one which makes the following diagram commute for all n:

F(X•) F(Y•)

F0(X•≤n) F0(Y•≤n+p).

dF( f )

prF,X
n

F0(d( fn))

prF,Y
n+p

On the other hand, F(d f ) is the unique morphism which makes the following diagram commute
for all n ≥ 0:

F(X•) F(Y•)

F0(X•≤n) F0(Y•
≤n+p+1)

F0(X•≤n) F0(Y•≤n+p).

F(d f )

prF,X
n prF,Y

n+p+1

F0(pY
n+p+1,n+p)

F0(pY
n+p+1,n+p◦(d f )n)

F0((d f )n)
prF,Y

n+p

Thanks to the identity (3.9), we finally conclude that F(d f ) = dF( f ).
To finish the proof, we check compatibility with compositions and identities. Let f : X• → Y•

be a degree p morphism and let g : Y• → Z• be a degree q morphism. Consider the following
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diagram (n ∈ N):

F(X•) F(Y•) F(Z•)

F0(X•≤n) F0(Y•≤n+p) F0(Z•≤n+p+q).

F( f ) F(g)

prF,X
n

F0( fn) F0(gn+p)

prF,Z
n+p+qprF,Y

n+p

F(g f )

F0((g f )n)

Thanks to the universal property of the directed limits defining F, we conclude that F(g f ) =
F(g)F( f ) once we show that

(g f )n = gn+p fn : X•≤n → Z•≤n+p+q.

This is proved by a direct inspection, recalling (3.5).
Compatibility with identities is shown in a similar way once we see that

(1X•)n = 1X•≤n

for all n. The proof that F is indeed a dg-functor is complete.
The last thing to check is that F is actually an extension of F0. If X ∈ C–

dg(P), then X = X≤M

for M ≫ 0. Hence, the directed system (X≤n+1 → X≤n)n is definitely constant, and it remains so
after applying F0. Hence, we have:

F(X) = lim
←−−

n

F0(X≤n) � F0(X),

and a direct inspection using the definition of F shows that this isomorphism is natural in X ∈
C–

dg(P). □

We now consider dg-functors Cdg(P) → dgm(B) (where B is any dg-category), which are
just Cdg(P)-B-dg-bimodules. We prove that, if they preserve the suitable (homotopy) colimits,
they can be reconstructed as extensions of the form (3.4).

Lemma 3.4. Let B be a dg-category, and let

F : Cdg(P)→ dgm(B)

be a dg-functor. We assume that, for any X• ∈ Cdg(P), the natural morphism

F(X•)→ lim
←−−
n≥0

F(X•≤n), (3.10)

induced by the maps F(pX
n ) : F(X•)→ F(X•≤n) (cf. (3.2)), is a quasi-isomorphism in dgm(B).

Let j : C–
dg(P) ↪→ Cdg(P) be the inclusion, and denote

F0 = F ◦ j.

Then, there is a quasi-isomorphism (of Cdg(P)-B-dg-bimodules):

F
∼
−→ lim
←−−
n≥0

F0(−≤n), (3.11)

where lim
←−−n≥0

F0(−≤n) is the extension of F0 discussed in Proposition 3.3.
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Proof. We only need to check that, for any given f : X• → Y• of degree p, the following diagram
is commutative:

F(X•) lim
←−−n≥0

F0(X•≤n)

F(Y•) lim
←−−n≥0

F0(Y•≤n).

∼

F( f )

∼

lim
←−n≥0

F0( fn)

Recalling the definition of lim
←−−n≥0

F0(−≤n) (see (3.7)), this is equivalent to the commutativity of

F(X•) F0(X•≤n)

F(Y•) F0(Y•≤n+p)

F(pX
n )

F( f )

F(pY
n+p)

F0( fn)

for all n ≥ 0. This, in turn, follows from the application of F to the diagram:

X• X•≤n

Y• Y•≤n+p,

pX
n

f

pY
n+p

fn

whose commutativity can be proved directly, also recalling the definition of fn (cf. (3.5)). □

Proposition 3.5. Assume that P is closed under countable products, so that Cdg(P) has (strict)
countable direct products. Let B be a dg-category and let

F : Cdg(P)→ dgm(B)

be a dg-functor. Assume that F preserves countable products up to quasi-isomorphism, namely:
for any family of objects {X•i : i ∈ N} the natural morphism

F(
∏

i

X•i )→
∏

i

F(X•i )

is a quasi-isomorphism in dgm(B). This holds, for instance, if B is pretriangulated and F is a
quasi-functor such that H0(F) preserves countable products.

Then, the above Lemma 3.4 can be applied and we obtain a quasi-isomorphism of Cdg(P)-B-
dg-bimodules:

F
∼
−→ lim
←−−
n≥0

F0(−≤n).

Proof. We observe that for all X• and n ∈ N the morphism

F(pX
n+1,n) : F(X•≤n+1)→ F(X•≤n)

is a split epimorphism, with right inverse given by F(iX
n,n+1) (cf. (3.1)). Hence, recalling [14,

Proposition 1.11] we conclude that
lim
←−−
n≥0

F(X≤n),

together with the suitable projection morphisms, is a homotopy limit of the sequence (F(pX
n+1,n))n.
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We conclude that the natural map

F(X•)→ lim
←−−
n≥0

F(X•≤n)

is a quasi-isomorphism. Indeed, if F preserves countable products up to quasi-isomorphism, it
preserves sequential homotopy limits up to quasi-isomorphism. The hypotheses of Lemma 3.4
are satisfied, and we may conclude. □

We now prove an extension result of quasi-isomorphisms which immediately implies the dual
of Proposition 3.1.

Lemma 3.6. As in Proposition 3.5, assume that P is closed under countable products, so that
Cdg(P) has (strict) countable products. Let B be a dg-category and let

F,G : Cdg(P)→ dgm(B)

be dg-functors. Assume that F and G preserve countable products up to quasi-isomorphism, so
that by Proposition 3.5 we have quasi-isomorphisms:

F
∼
−→ lim
←−−
n≥0

F0(−≤n),

G
∼
−→ lim
←−−
n≥0

G0(−≤n),

where F0 and G0 denote the restrictions F ◦ j and G ◦ j of F and G to C–
dg(P).

Next, let
φ0 : F0 → G0

be an isomorphism in the derived category D(B ⊗ C–
dg(P)op) of C–

dg(P)-B-dg-bimodules. Then,
φ0 can be extended to an isomorphism

φ : F → G

in the derived category D(B ⊗ Cdg(P)op) of Cdg(P)-B-dg-bimodules.

Proof. Up to isomorphism, we may identify F and G as follows:

F = lim
←−−
n≥0

F0(−≤n), G = lim
←−−
n≥0

G0(−≤n).

The isomorphism φ0 : F0 → G0 is represented by a zig-zag of quasi-isomorphisms

F0
φ′0
←−− H0

φ′′0
−−→ G0,

for a suitable H0 : C–
dg(P)→ dgm(B). Applying Proposition 3.3 and setting

H = lim
←−−
n≥0

H0(−≤n),

our goal is to extend both φ′0 and φ′′0 to quasi-isomorphisms

F
φ′

←− H
φ′′

−−→ G,

hence obtaining the desired extension φ : F → G of φ0.
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We describe the extension φ′; a similar argument will yield φ′′. Let X• ∈ Cdg(P). We define

φ′(X•) = lim
←−−
n≥0

φ′0(X•≤n) : H(X•)→ F(X•).

More precisely, φ′(X•) is the unique closed degree 0 morphism which makes the following
diagram commute for any n ≥ 0:

lim
←−−n≥0

H0(X•≤n) lim
←−−n≥0

F0(X•≤n)

H0(X•≤n) F0(X•≤n).

φ′(X•)

φ′0(X•≤n)

prF,X
nprH,X

n

The morphism φ′0(X•≤n) is a quasi-isomorphism for all n ≥ 0 by hypothesis. Recalling the first
lines of the proof of Proposition 3.5, we notice that both

lim
←−−
n≥0

H0(X•≤n), lim
←−−
n≥0

F0(X•≤n),

together with the given projection morphisms, are actually homotopy limits of the given se-
quences. Hence, we see that φ′(X•) is also a quasi-isomorphism.

To conclude, we only need to check that φ′ is a dg-natural transformation. Namely, if
f : X• → Y• is a degree p morphism in Cdg(P), we want to prove that the following diagram is
commutative:

lim
←−−n≥0

H0(X•≤n) lim
←−−n≥0

F0(X•≤n)

lim
←−−n≥0

H0(Y•≤n) lim
←−−n≥0

F0(Y•≤n).

φ′(X•)

H( f )

φ′(Y•)

F( f ) (∗)

To see this, recall the definitions of F( f ) and H( f ), see Proposition 3.3 and in particular (3.7);
commutativity of (∗) follows directly from the commutativity of the following diagram:

H0(X•≤n) F0(X•≤n)

H0(Y•≤n+p) F0(Y•≤n+p),

φ′0(X•≤n)

H0( fn)

φ′0(Y•≤n+p)

F0( fn)

for all n ≥ 0. □

3.4. The proof of Proposition 3.1. The proof of Proposition 3.1 will follow essentially from
Lemma 3.6 by duality of quasi-functors (cf. §1.1.2).

First, we observe that

C+dg(I)op
= C–

dg(Iop), Cdg(I)op = Cdg(Iop).

We also recall the inclusion dg-functor i′ : C+dg(I) ↪→ Cdg(I).
Now, starting from our isomorphism

φ0 : F0 → G0
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of quasi-functors
F0 = F ◦ i′,G0 = G ◦ i′ : C+dg(I)→ B,

we obtain an isomorphism of quasi-functors

φ
op
0 : Gop

0 → Fop
0 : C–

dg(Iop)→ Bop.

Clearly, H0(Fop) and H0(Gop) preserve countable products. We view Fop and Gop as dg-
functors

Fop,Gop : Cdg(Iop)→ dgm(Bop).
Let {X•n : n ∈ N} be any countable family of objects in Cdg(Iop). The following diagram in the
derived category D(Bop) involving F (and a similar diagram involving G) is commutative:

Bop(−,ΦF(
∏

n X•n))
∏

n B
op(−,ΦF(X•n))

F(
∏

n X•n)
∏

n F(X•n),

∼ ∼

where ΦF(Y•) denotes the object of Bop quasi-representing F(Y•). By assumption, the upper
horizontal arrow is an isomorphism in D(Bop). We conclude that the natural lower horizontal
arrow is a quasi-isomorphism.

Hence, we may apply Lemma 3.6 and find an isomorphism of quasi-functors

φop : Gop → Fop.

extending φop
0 . Taking its opposite, we obtain the desired isomorphism of quasi-functors

φ : F → G

extending φ0. This concludes the proof. □
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